Jump to ContentJump to Main Navigation
Show Summary Details
More options …


Journal of Interactive Media

Editor-in-Chief: Ziegler, Jürgen

3 Issues per year

See all formats and pricing
More options …
Volume 14, Issue 1


Merging Interactive Information Filtering and Recommender Algorithms – Model and Concept Demonstrator

Benedikt Loepp / Katja Herrmanny / Prof. Dr.-Ing. Jürgen Ziegler
Published Online: 2015-04-01 | DOI: https://doi.org/10.1515/icom-2015-0006


To increase controllability and transparency in recommender systems, recent research has been putting more focus on integrating interactive techniques with recommender algorithms. In this paper, we propose a model of interactive recommending that structures the different interactions users can have with recommender systems. Furthermore, as a novel approach to interactive recommending, we describe a technique that combines faceted information filtering with different algorithmic recommender techniques. We refer to this approach as blended recommending. We also present an interactive movie recommender based on this approach and report on its user-centered design process, in particular an evaluation study in which we compared our system with a standard faceted filtering system. The results indicate a higher level of perceived user control, more detailed preference settings, and better suitability when the search goal is vague.

Keywords: Models; Recommender Systems; Interactive Recommending; Information Filtering; User Interfaces


  • 1.

    Baeza-Yates, R., and Ribeiro-Neto, B. Modern Information Retrieval. ACM, 1999.Google Scholar

  • 2.

    Bostandjiev, S., O’Donovan, J., and Höllerer, T. Taste-Weights: A visual interactive hybrid recommender system. In Proc. RecSys ‘12, ACM (2012), 35–42.Google Scholar

  • 3.

    Brooke, J. SUS – A quick and dirty usability scale. In Usability Evaluation in Industry. Taylor & Francis, 1996, 189–194.Google Scholar

  • 4.

    Burke, R. Hybrid web recommender systems. In The Adaptive Web. Methods and Strategies of Web Personalization, P. Brusilovsky, A. Kobsa and W. Nejdl, Eds., Springer, 2007, 377–408.Google Scholar

  • 5.

    Celik, I., Abel, F., and Siehndel, P. Towards a framework for adaptive faceted search on twitter. In Proc. DAH ’11 (2011).Google Scholar

  • 6.

    Chen, L., and Pu, P. Critiquing-based recommenders: Survey and emerging trends. User Mod. and User-Adapted Interaction 22, 1–2 (2012), 125–150.Web of ScienceGoogle Scholar

  • 7.

    Chi, E. H. Transient user profiling. In Proc. Workshop on User Profiling (2004), 521–523.Google Scholar

  • 8.

    Dooms, S., de Pessemier, T., and Martens, L. Improving IMDb movie recommendations with interactive settings and filters. In Proc. RecSys ‘14, ACM (2014).Google Scholar

  • 9.

    Gantner, Z., Rendle, S., Freudenthaler, C., and Schmidt-Thieme, L. MyMediaLite: A free recommender system library. In Proc. RecSys ‘11, ACM (2011), 305–308.Google Scholar

  • 10.

    Girgensohn, A., Shipman, F., Chen, F., and Wilcox, L. DocuBrowse: Faceted searching, browsing, and recommendations in an enterprise context. In Proc. IUI ‘10, ACM (2010), 189–198.Google Scholar

  • 11.

    Hearst, M. A. Search User Interfaces. Cambridge University Press, 2009.Google Scholar

  • 12.

    Herrmanny, K., Schering, S., Berger, R., Loepp, B., Günter, T., Hussein, T., and Ziegler, J. MyMovieMixer: Ein hybrider Recommender mit visuellem Bedienkonzept. In Proc. Mensch & Computer ‘14, De Gruyter Oldenbourg (2014), 45–54.Google Scholar

  • 13.

    Jawaheer, G., Weller, P., and Kostkova, P. Modeling user preferences in recommender systems: A classification framework for explicit and implicit user feedback. ACM Trans. Interact. Intell. Syst. 4, 2 (2014), 8:1–8:26.Google Scholar

  • 14.

    Karimi, R., Freudenthaler, C., Nanopoulos, A., and Schmidt-Thieme, L. Exploiting the characteristics of matrix factorization for active learning in recommender systems. In Proc. RecSys ‘12, ACM (2012), 317–320.Google Scholar

  • 15.

    Knijnenburg, B. P., Willemsen, M. C., Gantner, Z., Soncu, H., and Newell, C. Explaining the user experience of recommender systems. User Mod. and User-Adapted Interaction, 22, 4–5 (2012), 441–504.Google Scholar

  • 16.

    Konstan, J. A., and Riedl, J. Recommender systems: From algorithms to user experience. User Mod. and User-Adapted Interaction 22, 1–2 (2012), 101–123.Google Scholar

  • 17.

    Koren, Y., Bell, R. M., and Volinsky, C. Matrix factorization techniques for recommender systems. IEEE Computer 42, 8 (2009), 30–37.CrossrefGoogle Scholar

  • 18.

    Kuhlthau, C. C. Inside the search process: Information seeking from the user’s perspective. J. Am. Soc. Inf. Sci. 42, 5 (1991), 361–371.Google Scholar

  • 19.

    Loepp, B., Herrmanny, K. and Ziegler, J. Blended recommending: Integrating interactive information filtering and algorithmic recommender techniques. In Proc. CHI ‘15, ACM (to appear).Google Scholar

  • 20.

    Loepp, B., Hussein, T., and Ziegler, J. Choice-based preference elicitation for collaborative filtering recommender systems. In Proc. CHI ‘14, ACM (2014), 3085–3094.Google Scholar

  • 21.

    Mandl M. and Felfernig, A. Improving the Performance of Unit Critiquing. In Proc. UMAP ’12, Springer (2012), 176–187.Google Scholar

  • 22.

    Marchionini, G. Information Seeking in Electronic Environments. Cambridge University Press, 1995.Google Scholar

  • 23.

    McNee, S. M., Riedl, J. and Konstan, J. A. Being accurate is not enough: How accuracy metrics have hurt recommender systems. In Ext. Abstracts CHI ‘06, ACM (2006), 1097–1101.Google Scholar

  • 24.

    McNee, S. M., Riedl, J. and Konstan, J. A. Making recommendations better: An analytic model for human-recommender interaction. In Ext. Abstracts CHI ‘06, ACM (2006), 1103–1108.Google Scholar

  • 25.

    Moshagen, M. and Thielsch, M. T. Facets of visual aesthetics. Int. J. Hum.-Comput. St. 68, 10 (2010), 689–709.Google Scholar

  • 26.

    Pariser, E. The Filter Bubble: What the Internet is Hiding From You. Penguin Press, 2011.Google Scholar

  • 27.

    Parra, D., Brusilovsky, P., and Trattner, C. See what you want to see: Visual user-driven approach for hybrid recommendation. In Proc. IUI ‘14, ACM (2014), 235–240.Google Scholar

  • 28.

    Pu, P., Chen, L., and Hu, R. A user-centric evaluation framework for recommender systems. In Proc. RecSys ‘11, ACM (2011), 157–164.Google Scholar

  • 29.

    Pu, P., Chen, L., and Hu, R. Evaluating recommender systems from the users perspective: Survey of the state of the art. User Mod. and User-Adapted Interaction 22, 4–5 (2012), 317–355.Google Scholar

  • 30.

    Pu, P., Faltings, B., Chen, L., Zhang, J., and Viappiani, P. Recommender Systems Handbook. Springer, 2010, ch. Usability Guidelines for Product Recommenders Based on Example Critiquing Research, 511–545.Web of ScienceGoogle Scholar

  • 31.

    Ricci, F., Rokach, L., and Shapira, B. Recommender Systems Handbook. Springer, 2010, ch. Introduction to Recommender Systems Handbook, 1–35.Google Scholar

  • 32.

    Smyth, B., and McGinty, L. An analysis of feedback strategies in conversational recommenders. In Proc. AICS ‘03 (2003).Google Scholar

  • 33.

    Sacco, G. M., and Tzitzikas, Y. Dynamic Taxonomies and Faceted Search. Springer, 2009.Web of ScienceGoogle Scholar

  • 34.

    Salton, G., and Buckley, C. Improving retrieval performance by relevance feedback. In Readings in Information Retrieval. Morgan Kaufmann, 1997, 355–364.Google Scholar

  • 35.

    Thai, V., Rouille, P.-Y., and Handschuh, S. Visual abstraction and ordering in faceted browsing of text collections. ACM Trans. Intell. Syst. Technol. 3, 2 (2012), 21:1–21:24.Web of ScienceGoogle Scholar

  • 36.

    Tintarev, N., and Masthoff, J. Recommender Systems Handbook. Springer, 2010, ch. Designing and Evaluating Explanations for Recommender Systems, 479–510.Google Scholar

  • 37.

    Tvarožek, M., Barla, M., Frivolt, G., Tomša, M., and Bieliková, M. Improving semantic search via integrated personalized faceted and visual graph navigation. In Proc. SOFSEM ’08, Springer (2008), 778–789.Google Scholar

  • 38.

    Vig, J., Sen, S., and Riedl, J. Navigating the tag genome. In Proc. IUI ‘11, ACM (2011), 93–102.Google Scholar

  • 39.

    Voigt, M., Werstler, A., Polowinski, J., and Meißner, K. Weighted faceted browsing for characteristics-based visualization selection through end users. In Proc. EICS ’12, ACM (2012), 151–156.Google Scholar

  • 40.

    Xiao, B., and Benbasat, I. E-commerce product recommendation agents: Use, characteristics, and impact. MIS Quarterly 31, 1 (2007), 137–209.Google Scholar

  • 41.

    Yee, K.-P., Swearingen, K., Li, K. and Hearst, M. Faceted metadata for image search and browsing. In Proc. CHI ‘03, ACM (2003), 401–408.Google Scholar

  • 42.

    Zadeh, L. Fuzzy sets. Information and Control, 8, 3 (1965), 338–353.Google Scholar

  • 43.

    Zhang, J., Jones, N., and Pu, P. A visual interface for critiquing-based recommender systems. In Proc. EC ‘08, ACM (2008), 230–239.Google Scholar

  • 44.

    Zhao, X., Zhang, W., and Wang, J. Interactive collaborative filtering. In Proc. CIKM ‘13, ACM (2013), 1411–1420.Google Scholar

About the article

Benedikt Loepp

Benedikt Loepp, M. Sc. works as a researcher in the Department of Computer Science and Applied Cognitive Science at the University of Duisburg-Essen. His research focuses on the field of recommender systems, in particular, new ways to increase their interactivity.

Katja Herrmanny

Katja Herrmanny, B. Sc. joined the Interactive Systems group as a student assistant in 2012, while studying in the bachelor program of Applied Cognitive and Media Science at the University of Duisburg-Essen. After receiving her bachelor’s degree in September 2012, she now works as a researcher, while studying the master program of Applied Cognitive and Media Science.

Prof. Dr.-Ing. Jürgen Ziegler

Jürgen Ziegler is a full professor in the Department of Computer Science and Applied Cognitive Science at the University of Duisburg-Essen where he directs the Interactive Systems Research Group. Prior to joining the University, he was head of the Competence Center for Software Technology and Interactive Systems at the Fraunhofer Institute for Industrial Engineering in Stuttgart.

Published Online: 2015-04-01

Published in Print: 2015-04-15

Citation Information: icom, Volume 14, Issue 1, Pages 5–17, ISSN (Online) 2196-6826, ISSN (Print) 1618-162X, DOI: https://doi.org/10.1515/icom-2015-0006.

Export Citation

© 2015 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in