Jump to ContentJump to Main Navigation
Show Summary Details
More options …

i-com

Journal of Interactive Media

Editor-in-Chief: Ziegler, Jürgen

3 Issues per year

Online
ISSN
2196-6826
See all formats and pricing
More options …
Volume 15, Issue 2

Issues

Smartglasses for the Triage of Casualties and the Identification of Hazardous Materials

How Smartglasses Can Help Emergency Medical Services Managing Challenging Rescue Missions

Henrik Berndt
  • Corresponding author
  • Institute for Multimedia and Interactive Systems, University of Luebeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tilo Mentler
  • Institute for Multimedia and Interactive Systems, University of Luebeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Michael Herczeg
  • Institute for Multimedia and Interactive Systems, University of Luebeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-08-16 | DOI: https://doi.org/10.1515/icom-2016-0024

Abstract

Emergency Medical Services (EMS) can be confronted with complex and challenging situations with many casualties that require special procedures and organizational structures. In order to keep control and records, incident commanders use paper-based notes, lists and forms. The increasing availability of smartglasses leads to the research question, whether they can support members of EMS and improve processes and efficiency. In this contribution, we describe use cases for smartglasses in emergency medicine, such as the triage in incidents with many casualties and the recognition of hazardous materials in accident contexts. We describe results from interviews with 10 members of EMS and civil protection units in Germany and from prototypical applications that have been developed and evaluated together with domain experts. The prototypical applications described in this contribution have shown promising results with respect to usability and acceptance.

Keywords: Human-Computer Interaction; Emergency Medical Services; Google Glass, Triage; Hazardous Materials

References

  • [1]

    Adler, C., Krüsmann, M., Greiner-Mai, T., Donner, A., Chaves, J. M. & Via Estrem, À. (2011). IT-Supported Management of Mass Casualty Incidents: The e-Triage Project. In Proceedings of the 8th International ISCRAM Conference. Lisbon.Google Scholar

  • [2]

    Berndt, H., Mentler, T. & Herczeg, M. (2015). Optical Head-Mounted Displays in Mass Casualty Incidents: Keeping an Eye on Patients and Hazardous Materials. International Journal of Information Systems for Crisis Response and Management (IJISCRAM), 7(3), 1–15.Google Scholar

  • [3]

    Billings, C. E. (1997). Aviation Automation: The Search for A Human-Centered Approach. Mahwah, New Jersey: Lawrence Erlbaum.Google Scholar

  • [4]

    Bundesamt für Bevölkerungsschutz und Katastrophenhilfe. (2015). 6. Sichtungs-Konsensus-Konferenz. Retrieved from http://www.bbk.bund.de/SharedDocs/Downloads/BBK/DE/Downloads/GesBevS/6_Konsensus-Konferenz_Protokoll.pdf?__blob=publicationFile.

  • [5]

    Carenzo, L., Barra, F. L., Ingrassia, P. L., Colombo, D., Costa, A. & Della Corte, F. (2015). Disaster medicine through Google Glass. European Journal of Emergency Medicine, 22(3), 222–225.Google Scholar

  • [6]

    Cicero, M. X., Walsh, B., Solad, Y., Whitfill, T., Paesano, G., Kim, K., Baum, C. R. & Cone, D. C. (2015). Do You See What I See? Insights from Using Google Glass for Disaster Telemedicine Triage. Prehospital and Disaster Medicine, 30, 4–8.Google Scholar

  • [7]

    Ellebrecht, N. (2013). Die Realität der Sichtung. Ergebnisse einer Befragung zur Sichtungsausbildung und MANV-Erfahrung von Notärzten und Rettungsassistenten. Notfall + Rettungsmedizin, 16(5), 369–376.CrossrefGoogle Scholar

  • [8]

    Endsley, M. R., Bolté, B. & Jones, D. G. (2003). Designing for Situation Awareness. London: Taylor & Francis.Google Scholar

  • [9]

    Endsley, M. R. & Garland, D. J. (Ed.). (2000). Situation Awareness - Analysis and Measurement. Mahwah, New Jersey: Lawrence Erlbaum.Google Scholar

  • [10]

    Google Inc. (2015). Design for Glass. Retrieved from https://developers.google.com/glass/design/.

  • [11]

    Jenkins, J. L., McCarthy, M. L., Sauer, L. M., Green, G. B., Stuart, S., Thomas, T. L. & Hsu, E. B. (2008). Mass-casualty triage: time for an evidence-based approach. Prehosp Disaster Med. 23(1), 3–8.Google Scholar

  • [12]

    Kanz, K., Hornburger, P., Kay, M., Mutschler, W. & Schäuble, W. (2006). mSTaRT-Algorithmus für Sichtung, Behandlung und Transport bei einem Massenanfall von Verletzten. Notfall + Rettungsmedizin, 9(3), 264–270.CrossrefGoogle Scholar

  • [13]

    Killeen, J. P., Chan, T. C., Buono, C. J., Griswold, W. G. & Lenert, L. A. (2006). A wireless first responder handheld device for rapid triage, patient assessment and documentation during mass casualty incidents. In AMIA Annual Symposium Proceedings, 429–433.Google Scholar

  • [14]

    Krüger-Brand, H. E. (2014). Telemedizin in Bayern: Mobile Lösung für den Rettungsdienst. Deutsches Ärzteblatt 111(45), 13.Google Scholar

  • [15]

    Luiz, T., Zurek, B., Rauen, C., Jugenheimer, K. & Ullrich, C. (2013). Einsatzdokumentation im Rettungsdienst: Papier oder Tablet? Rettungsdienst 36(7), 668–670.Google Scholar

  • [16]

    Mentler, T. & Herczeg, M. (2014). Interactive Cognitive Artifacts for Enhancing Situation Awareness of Incident Commanders in Mass Casualty Incidents. In Proceedings of the 2014 European Conference on Cognitive Ergonomics (ECCE ‘14), Article 24. New York: ACM.Google Scholar

  • [17]

    Mentler, T., Herczeg, M., Jent, S., Stoislow, M., Kindsmüller, M. C. & Rumland, T. (2012). Routine mobile applications for emergency medical services in mass casualty incidents. Biomedical Engineering / Biomedizinische Technik, 57(SI-1 Track-N), 784–787.Google Scholar

  • [18]

    Peters, O., Runggaldier, K. & Schlechtriemen, T. (2007). Algorithmen im Rettungsdienst. Ein System zur Effizienzsteigerung im Rettungsdienst. Notfall + Rettungsmedizin 10(3), 229–236.Google Scholar

  • [19]

    Schmiedel, R. & Behrendt, H. (2015). Leistungen des Rettungsdienstes 2012 / 13. Analyse des Leistungsniveaus im Rettungsdienst für die Jahre 2012 und 2013. (Berichte der Bundesanstalt für Straßenwesen, M 260). Bremen: Carl Schünemann Verlag.Google Scholar

  • [20]

    Sefrin, P. (2010). Der Massenanfall von Verletzten. Notfallvorsorge 41(4), 13–16.Google Scholar

  • [21]

    World Health Organization. (2007). Mass Casualty Management Systems. Strategies and guidelines for building health sector capacity. WHO Document Production Services. Retrieved from http://www.who.int/hac/techguidance/MCM_guidelines_inside_final.pdf.

About the article

Henrik Berndt

Henrik Berndt is a research assistant at the Institute for Multimedia and Interactive Systems (IMIS) of the University of Luebeck. He holds a B.Sc. and M.Sc. in Informatics, specializing in Digital Media, and is currently working on his dissertation. His main current research interests include human-computer interaction in safety-critical contexts and interaction design for mobile devices.

Tilo Mentler

Tilo Mentler is a research assistant at the Institute for Multimedia and Interactive Systems (IMIS) of the University of Luebeck. He holds a diploma in Informatics, specializing in Digital Media. Recently, he finished his dissertation about the usability of mobile interactive systems in regular and extraordinary missions of Emergency Medical Services. His main current research interests include human-computer interaction in safety-critical contexts (e. g. medicine), usability engineering and interaction design of mobile devices. He is a founding member and vice-chairman of the sub-group “Human-Computer Interaction in Safety-Critical Systems” within the special interest group “Human-Computer Interaction” of the German Informatics Society (GI).

Michael Herczeg

Prof. Dr. rer. nat. Michael Herczeg is professor of practical computer science and media informatics and director of the Institute for Multimedia and Interactive Systems (IMIS) of the University of Luebeck. His main areas of interest are human-computer interaction, software ergonomics, interaction design, multimedia and interactive systems, computer-aided teaching and learning as well as safety-critical human-machine systems. He is a co-founder and chair of the German ACM SIGCHI and Human-Computer-Interaction section of the German Informatics Society (GI). Prof. Herczeg is a member of ACM and GI and served as an organizer, reviewer, chair and keynote speaker for more than 100 conferences and workshops. He is an author and editor of more than 200 publications and is an editor for books and journals in interactive media. He works as a consultant for industry and government in the area of human-computer-interaction, human factors, software-ergonomics, usability engineering, eLearning and safety-critical human-machine systems.


Published Online: 2016-08-16

Published in Print: 2016-08-01


Citation Information: i-com, Volume 15, Issue 2, Pages 145–153, ISSN (Online) 2196-6826, ISSN (Print) 1618-162X, DOI: https://doi.org/10.1515/icom-2016-0024.

Export Citation

© 2016 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in