Jump to ContentJump to Main Navigation
Show Summary Details
More options …


Journal of Interactive Media

Editor-in-Chief: Ziegler, Jürgen

See all formats and pricing
More options …
Volume 16, Issue 2


On the Influence of Walking on Hazard Detection for Prospective User-Centered Design of an Assistance System for Older Pedestrians

Janna Protzak
  • Corresponding author
  • Junior research group FANS (Pedestrian Assistance System for Older Road User), 217306 Technische Universität Berlin, Berlin, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rebecca Wiczorek
  • Junior research group FANS (Pedestrian Assistance System for Older Road User), 217306 Technische Universität Berlin, Berlin, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-08-10 | DOI: https://doi.org/10.1515/icom-2017-0007


As older pedestrians are at high risk of being involved in car crashes, an assistance system is currently under development. One of it’s aims is to encourage them to stop walking before looking for traffic. The approach was evaluated in two studies. Age group -young vs. old- and motoric condition -walking vs. standing- served as independent variables in both experiments. Experiment one was conducted in a pedestrian traffic simulation with a traffic related visual hazard detection task with simulated walking. Analysis revealed no age-specific dual-task costs for accuracy and response time. This unexpected result was ascribed to the insufficient operationalization of the walking task, which lacked important aspects of real walking such as requirements of keeping the balance. Therefore, experiment two, comprised real walking but a simple visual task. In the second experiment older participants missed more targets than younger. More important, number of errors increased as a function of motor load only for older participants. Response times were enhanced for older participants and faster for both groups while standing compared to walking. Results are discussed with regard to the development of an assistance systems for older pedestrians and theoretical implications for prospective user-centered experimental design.

Keywords: Older pedestrians; assistance systems; user-centered design; road crossing; hazard detection


  • [1]

    Abras, C., Maloney-Krichmar, D., & Preece, J. (2004). User-centered design. In W. Bainbridge (Ed.), Encyclopedia of human-computer interaction (pp. 445–456). Thousand Oaks: SAGE Publications.Google Scholar

  • [2]

    Al-Yahya, E., Dawes, H., Smith, L., Dennis, A., Howells, K., & Cockburn, J. (2011). Cognitive motor interference while walking: a systematic review and meta-analysis. Neuroscience & Biobehavioral Reviews, 35(3), 715–728.Google Scholar

  • [3]

    Avineri, E., Shinar, D., & Susilo, Y. O. (2012). Pedestrians’ behaviour in cross walks: the effects of fear of falling and age. Accident Analysis & Prevention, 44(1), 30–34.Google Scholar

  • [4]

    Ayaz, A., Saleem, A. B., Schölvinck, M. L., & Carandini, M. (2013). Locomotion controls spatial integration in mouse visual cortex. Current Biology, 23(1), 890–894.CrossrefGoogle Scholar

  • [5]

    Ball, K. K., Beard, B. L., Roenker, D. L., Miller, R. L., & Griggs, D. S. (1988). Age and visual search: expanding the useful field of view. JOSA A, 5(12), 2210–2219.Google Scholar

  • [6]

    Ball, K. K., Roenker, D. L., & Bruni, J. R. (1990). Developmental changes in attention and visual search throughout adulthood. Advances in psychology, 69, 489–508.Google Scholar

  • [7]

    Barón, A., & Green, P. (2006). Safety and usability of speech interfaces for in-vehicle tasks while driving: A brief literature review (Tech. Rep.). University of Michigan, Transportation Research Institute.

  • [8]

    Bernhoft, I. M., & Carstensen, G. (2008). Preferences and behaviour of pedestrians and cyclists by age and gender. Transportation Research Part F: Traffic Psychology and Behaviour, 11(2), 83–95.CrossrefGoogle Scholar

  • [9]

    Brooks, J. O., Goodenough, R. R., Crisler, M. C., Klein, N. D., Alley, R. L., Koon, B. L., …Wills, R. F. (2010). Simulator sickness during driving simulation studies. Accident Analysis & Prevention, 42(3), 788–796.Google Scholar

  • [10]

    Caird, J. K., Chisholm, S., Edwards, C. J., & Creaser, J. I. (2007). The effect of yellow light onset time on older and younger drivers? perception response time (PRT) and intersection behavior. Transportation Research Part F: Traffic Psychology and Behaviour, 10(5), 383–396.CrossrefGoogle Scholar

  • [11]

    Cromwell, R. L., Newton, R. A., & Forrest, G. (2002). Influence of vision on head stabilization strategies in older adults during walking. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 57(7), M442–M448.CrossrefGoogle Scholar

  • [12]

    Dietz, V. (2002). Proprioception and locomotor disorders. Nature Reviews Neuroscience, 3(10), 781–790.CrossrefGoogle Scholar

  • [13]

    Dommes, A., Cavallo, V., Dubuisson, J.-B., Tournier, I., & Vienne, F. (2014). Crossing a two-way street: comparison of young and old pedestrians. Journal of Safety Research, 50, 27–34.CrossrefGoogle Scholar

  • [14]

    Dommes, A., Le Lay, T., Vienne, F., Dang, N.-T., Beaudoin, A. P., & Do, M. C. (2015). Towards an explanation of age-related difficulties in crossing a two-way street. Accident Analysis & Prevention, 85, 229–238.Google Scholar

  • [15]

    Feldstein, I., Dietrich, A., Milinkovic, S., & Bengler, K. (2016). A pedestrian simulator for urban crossing scenarios. IFAC-PapersOnLine, 49(19), 239–244.Google Scholar

  • [16]

    Geraghty, J., Holland, C., & Rochelle, K. (2016). Examining links between cognitive markers, movement initiation and change, and pedestrian safety in older adults. Accident Analysis & Prevention, 89, 151–159.Google Scholar

  • [17]

    Gérard, N., Huber, S., Nachtwei, J., Schubert, U., & Satriadarma, B. (2011). A framework for designers to support prospective design. International Journal on Human-Computer Interaction, II, 7, 17–38.Google Scholar

  • [18]

    Horswill, M. S., Anstey, K. J., Hatherly, C. G., & Wood, J. M. (2010). The crash involvement of older drivers is associated with their hazard perception latencies. Journal of the International Neuropsychological Society, 16(05), 939–944.CrossrefGoogle Scholar

  • [19]

    Horswill, M. S., Marrington, S. A., McCullough, C. M., Wood, J., Pachana, N. A., McWilliam, J., & Raikos, M. K. (2008). The hazard perception ability of older drivers. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 63(4), 212–218.CrossrefGoogle Scholar

  • [20]

    Huxhold, O., Li, S.-C., Schmiedek, F., & Lindenberger, U. (2006). Dual-tasking postural control: aging and the effects of cognitive demand in conjunction with focus of attention. Brain Research Bulletin, 69(3), 294–305.CrossrefGoogle Scholar

  • [21]

    Li, K. Z., Lindenberger, U., Freund, A. M., & Baltes, P. B. (2001). Walking while memorizing: age-related differences in compensatory behavior. Psychological Science, 12(3), 230–237.CrossrefGoogle Scholar

  • [22]

    Lindenberger, U., Marsiske, M., & Baltes, P. B. (2000). Memorizing while walking: increase in dual-task costs from young adulthood to old age. Psychology and Aging, 15(3), 417.CrossrefGoogle Scholar

  • [23]

    Lundin-Olsson, L., Nyberg, L., & Gustafson, Y. (1997). “Stops walking when talking” as a predictor of falls in elderly people. The Lancet, 349(9052), 617.CrossrefGoogle Scholar

  • [24]

    Maillot, P., Dommès, A., Dang, N.-T., & Vienne, F. (2017). Training the elderly in pedestrian safety: transfer effect between two virtual reality simulation devices. Accident Analysis & Prevention, 99, 161–170.Google Scholar

  • [25]

    Malek-Ahmadi, M., Powell, J. J., Belden, C. M., O’Connor, K., Evans, L., Coon, D. W., & Nieri, W. (2015). Age-and education-adjusted normative data for the montreal cognitive assessment (moca) in older adults age 70–99. Aging, Neuropsychology, and Cognition, 22(6), 755–761.Google Scholar

  • [26]

    Morrongiello, B. A., Corbett, M., Milanovic, M., & Beer, J. (2015). Using a virtual environment to examine how children cross streets: advancing our understanding of how injury risk arises. Journal of Pediatric Psychology, 265–275.Google Scholar

  • [27]

    Moss, J., Scisco, J., & Muth, E. (2008). Simulator sickness during head mounted display (hmd) of real world video captured scenes. In Proceedings of the human factors and ergonomics society annual meeting (Vol. 52, pp. 1631–1634).Google Scholar

  • [28]

    Nasreddine, Z. S., Phillips, N. A., Bédirian, V., Charbonneau, S., Whitehead, V., Collin, I., Cummings, J. L., Chertkow, H., (2005). The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. Journal of the American Geriatrics Society, 53(4), 695–699, Wiley Online Library.CrossrefGoogle Scholar

  • [29]

    Neider, M. B., Gaspar, J. G., McCarley, J. S., Crowell, J. A., Kaczmarski, H., & Kramer, A. F. (2011). Walking and talking: dual-task effects on street crossing behavior in older adults. Psychology and Aging, 26(2), 260.CrossrefGoogle Scholar

  • [30]

    Older, S., & Grayson, G. (1974). Perception and decision in the pedestrian task (Tech. Rep. No. 49UC). Transport and Road Research Laboratory (TRRL).

  • [31]

    Oxley, J., Fildes, B., Ihsen, E., Charlton, J., & Day, R. (1997). Differences in traffic judgements between young and old adult pedestrians. Accident Analysis & Prevention, 29(6), 839–847.Google Scholar

  • [32]

    Park, G. D., Allen, R. W., Fiorentino, D., Rosenthal, T. J., & Cook, M. L. (2006). Simulator sickness scores according to symptom susceptibility, age, and gender for an older driver assessment study. In Proceedings of the human factors and ergonomics society annual meeting (Vol. 50, pp. 2702–2706).Google Scholar

  • [33]

    Romoser, M. R., Pollatsek, A., Fisher, D. L., & Williams, C. C. (2013). Comparing the glance patterns of older versus younger experienced drivers: scanning for hazards while approaching and entering the intersection. Transportation Research Part F: Traffic Psychology and Behaviour, 16, 104–116.CrossrefGoogle Scholar

  • [34]

    Rossetti, H. C., Lacritz, L. H., Cullum, C. M., & Weiner, M. F. (2011). Normative data for the montreal cognitive assessment (moca) in a population-based sample. Neurology, 77(13), 1272–1275.CrossrefGoogle Scholar

  • [35]

    Rytz, M. (2006). Senioren und Verkehrssicherheit [Seniors and traffic safety] (Michael Rytz, Ed.). Bern, Schweiz: VCS Verkehrs-Club der Schweiz.Google Scholar

  • [36]

    Salthouse, T. A. (1996). The processing-speed theory of adult age differences in cognition. Psychological Review, 103(3), 403.CrossrefGoogle Scholar

  • [37]

    Schäfer, S. (2014). The ecological approach to cognitive–motor dual-tasking: findings on the effects of expertise and age. Frontiers in Psychology, 5, 1167.Google Scholar

  • [38]

    Schäfer, S., Huxhold, O., & Lindenberger, U. (2006). Healthy mind in healthy body? A review of sensorimotor–cognitive interdependencies in old age. European Review of Aging and Physical Activity, 3(2), 45.CrossrefGoogle Scholar

  • [39]

    Schott, N. (2008). Deutsche Adaptation der “Activities-Specific Balance Confidence (ABC) Scale” zur Erfassung der sturzassoziierten Selbstwirksamkeit. Zeitschrift fuer Gerontologie und Geriatrie, 41(6), 475–485.Google Scholar

  • [40]

    Serafin, C., Wen, C., Paelke, G., & Green, P. (1993). Car phone usability: a human factors laboratory test. In Proceedings of the human factors and ergonomics society annual meeting (Vol. 37, pp. 220–224).Google Scholar

  • [41]

    Shumway-Cook, A., Woollacott, M., Kerns, K. A., & Baldwin, M. (1997). The effects of two types of cognitive tasks on postural stability in older adults with and without a history of falls. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 52(4), M232–M240.CrossrefGoogle Scholar

  • [42]

    Simpson, G., Johnston, L., & Richardson, M. (2003). An investigation of road crossing in a virtual environment. Accident Analysis & Prevention, 35(5), 787–796.Google Scholar

  • [43]

    Sorell, T., & Draper, H. (2014). Robot carers, ethics, and older people. Ethics and Information Technology, 16(3), 183–195.Google Scholar

  • [44]

    Statistisches Bundesamt. (2013). Unfallentwicklung auf Deutschen Strassen 2012 [Accident development on German roads in 2012]. Begleitmaterial zur Pressekonferenz am 10. Juli 2013 in Berlin. Wiesbaden. Retrieved from https://www.destatis.de/DE/Publikationen.Google Scholar

  • [45]

    Statistisches Bundesamt. (2016a). Unfallentwicklung auf Deutschen Strassen 2015 [Accident development on German roads in 2015]. Begleitmaterial zur Pressekonferenz am 12. Juli 2016 in Berlin. Wiesbaden. Retrieved from https://www.destatis.de/DE/Publikationen.Google Scholar

  • [46]

    Statistisches Bundesamt. (2016b). Unfälle von Senioren im Strassenverkehr [Accidents of senior citizens in road traffic]. Wiesbaden. Retrieved from https://www.destatis.de/DE/Publikationen.Google Scholar

  • [47]

    Stuart-Hamilton, I. (2000). The psychology of ageing: An introduction. J. Kingsley Publishers Philadelphia.Google Scholar

  • [48]

    Tapiro, H., Borowsky, A., Oron-Gilad, T., & Parmet, Y. (2016). Where do older pedestrians glance before deciding to cross a simulated two-lane road? A pedestrian simulator paradigm. In Proceedings of the human factors and ergonomics society annual meeting (Vol. 60, pp. 11–15).Google Scholar

  • [49]

    Tinetti, M. E., De Leon, C. F. M., Doucette, J. T., & Baker, D. I. (1994). Fear of falling and fall-related efficacy in relationship to functioning among community-living elders. Journal of Gerontology, 49(3), M140–M147.CrossrefGoogle Scholar

  • [50]

    Whittle, M. W. (2014). Gait analysis: An introduction. Oxford: Butterworth-Heinemann.Google Scholar

  • [51]

    Wickelgren, W. A. (1977). Speed-accuracy tradeoff and information processing dynamics. Acta Psychologica, 41(1), 67–85.CrossrefGoogle Scholar

  • [52]

    Wickens, C. D. (2002). Multiple resources and performance prediction. Theoretical Issues in Ergonomics Science, 3(2), 159–177.Google Scholar

  • [53]

    Woollacott, M., & Shumway-Cook, A. (2002). Attention and the control of posture and gait: a review of an emerging area of research. Gait & Posture, 16(1), 1–14.CrossrefGoogle Scholar

  • [54]

    World Health Organization. (2015). Global status report on road safety 2015. Retrieved from http://www.who.int/violence_injury_prevention/road_safety_status/2015/en/.Google Scholar

  • [55]

    Yogev-Seligmann, G., Hausdorff, J. M., & Giladi, N. (2008). The role of executive function and attention in gait. Movement Disorders, 23(3), 329–342.CrossrefGoogle Scholar

About the article

Janna Protzak

Janna Protzak received her Ph.D. in 2014 and joined the Junior Research Group FANS at the Technische Universität Berlin (founded by the German Federal Ministry of Education and Research – BMBF) in the same year. Her current studies in the field of Mobile Brain/Body Imaging (MoBI) focuses on visual perception and mobility in older adults.

Rebecca Wiczorek

Rebecca Wiczorek is the leader of the Junior Research Group FANS at the Technische Universität Berlin that is founded by the German Federal Ministry of Education and Research (BMBF). She received her Ph.D. in 2012. Her background is in Human Factors and Psychology and her research interest is in Traffic Psychology and Engineering Psychology with a special focus on the human-machine interaction of older adults.

Published Online: 2017-08-10

Published in Print: 2017-08-28

Citation Information: i-com, Volume 16, Issue 2, Pages 87–98, ISSN (Online) 2196-6826, ISSN (Print) 1618-162X, DOI: https://doi.org/10.1515/icom-2017-0007.

Export Citation

© 2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in