Jump to ContentJump to Main Navigation
Show Summary Details
More options …

i-com

Journal of Interactive Media

Editor-in-Chief: Ziegler, Jürgen

Online
ISSN
2196-6826
See all formats and pricing
More options …
Volume 16, Issue 3

Issues

Visualization and Interaction with Multiple Devices. A Case Study on Reachability of Remote Areas for Emergency Management

Jordi Tost / Frank Heidmann
Published Online: 2017-11-24 | DOI: https://doi.org/10.1515/icom-2017-0027

Abstract

When a hazard event strikes, the reachability of affected areas is a significant factor that can determine if the situation becomes a disaster. Decision makers have to react quickly while under stress to tasks that depend on the road network, such as management of relief operations, planning of evacuation routes, or food and first aid distribution. In this paper we present an approach for exploring and validating reachability of remote areas through visualization with an interactive tabletop and tablets. We propose a simple way to combine and visualize data from scientists and communities to provide insights into area reachability, as well as the likely impacts of future hazard events on access routes. Moreover, our interface introduces an approach to assess alternative accessibility options to isolated settlements by helicopter or off-road routes that builds on satellite data and interactive collaborative mapping. This set of visualization and interaction techniques facilitates the formation of risk scenarios for better planning, preparedness and response activities. We developed our research with a case study of landslide threat for an area in Colombia.

Keywords: Data Visualization; Human-Computer Interaction (HCI); Multi-touch; User-Centered Design; Mobility; Disaster Management

References

  • [1]

    Anwar, A., Nagel, T., & Ratti, C. (2014, March). Traffic origins: A Simple Visualization Technique to Support Traffic Incident Analysis. In Visualization Symposium (PacificVis), 2014 IEEE Pacific (pp. 316–319). IEEE.Google Scholar

  • [2]

    Bláha, J. D., & Štěrba, Z. (2014). Colour contrast in cartographic works using the principles of Johannes Itten. The Cartographic Journal, 51(3), 203–213.CrossrefGoogle Scholar

  • [3]

    Bortolaso, C., Oskamp, M., Graham, T. C., & Brown, D. (2013, October). OrMiS: a tabletop interface for simulation-based training. In Proceedings of the 2013 ACM international conference on Interactive tabletops and surfaces (pp. 145–154). ACM.Google Scholar

  • [4]

    Borzo, J. (2004). Get the picture: In the age of information overload, visualization software promises to cut through the clutter. The Wall Street Journal.Google Scholar

  • [5]

    Bresciani, S., & Eppler, M. J. (2009). The benefits of synchronous collaborative information visualization: Evidence from an experimental evaluation. IEEE transactions on visualization and computer graphics, 15(6).Google Scholar

  • [6]

    Buard, E., & Ruas, A. (2007, August). Evaluation of colour contrasts by means of expert knowledge for on-demand mapping. In 23rd ICA conference (pp. 4–10).Google Scholar

  • [7]

    Cawthon, N., & Vande Moere, A. (2007, July). The effect of aesthetic on the usability of data visualization. In Information Visualization, 2007. IV’07. 11th International Conference (pp. 637–648). IEEE.Google Scholar

  • [8]

    Chen, C. (2010). Information visualization. Wiley Interdisciplinary Reviews: Computational Statistics, 2(4), 387–403.CrossrefGoogle Scholar

  • [9]

    Chesneau, E., Ruas, A., & Bonin, O. (2005). Colour Contrasts Analysis For A Better Legibility Of Graphic Signs For Risk Maps. In Proc. of the International Cartographic Conference: Mapping Approaches Into A Changing World, A Coruna.Google Scholar

  • [10]

    Chokshi, A., Seyed, T., Marinho Rodrigues, F., & Maurer, F. (2014, November). ePlan multi-surface: A multi-surface environment for emergency response planning exercises. In Proceedings of the Ninth ACM International Conference on Interactive Tabletops and Surfaces (pp. 219–228). ACM.Google Scholar

  • [11]

    Coulibaly, I., Spiric, N., Sghaier, M. O., Manzo-Vargas, W., Lepage, R., & St-Jacques, M. (2014, July). Road extraction from high resolution remote sensing image using multiresolution in case of major disaster. In Geoscience and Remote Sensing Symposium (IGARSS), 2014 IEEE International (pp. 2712–2715). IEEE.Google Scholar

  • [12]

    Coury, B. G., & Boulette, M. D. (1992). Time stress and the processing of visual displays. Human factors, 34(6), 707–725.CrossrefGoogle Scholar

  • [13]

    d3.js. https://d3js.org/. Accessed: 19 September 2017.Google Scholar

  • [14]

    Doeweling, S., Tahiri, T., Sowinski, P., Schmidt, B., & Khalilbeigi, M. (2013, October). Support for collaborative situation analysis and planning in crisis management teams using interactive tabletops. In Proceedings of the 2013 ACM international conference on Interactive tabletops and surfaces (pp. 273–282). ACM.Google Scholar

  • [15]

    Elmqvist, N., Vande Moere, A., Jetter, H. C., Cernea, D., Reiterer, H., & Jankun-Kelly, T. J. (2011). Fluid interaction for information visualization. Information Visualization, 10(4), 327–340.CrossrefGoogle Scholar

  • [16]

    Faturechi, R., & Miller-Hooks, E. (2014). Measuring the performance of transportation infrastructure systems in disasters: A comprehensive review. Journal of infrastructure systems, 21(1), 04014025.Google Scholar

  • [17]

    Fuhrmann, S., & Pike, W. (2005). User-centered design of collaborative geovisualization tools. In Exploring geovisualization; Dykes, J., MacEachren, A. M., Kraak, M. J., Eds.; Elsevier Science: Amsterdam, The Netherlands, 2005; (pp. 591–610).Google Scholar

  • [18]

    Garschagen, M., Hagenlocher, M., Comes, M., Dubbert, M., Sabelfeld, R., Lee, Y. J., … & Pott, S. (2016). World Risk Report 2016. Bündnis Entwicklung Hilft and United Nations University–Institute for Environment and Human Security (UNU-EHS).Google Scholar

  • [19]

    Gortana, F., Kaim, S., von Lupin, M., & Nagel, T. (2014) Isoscope – Visualizing temporal mobility variance with isochrone maps. In Poster Abstracts of IEEE VIS 2014.Google Scholar

  • [20]

    Hinckley, K., Yatani, K., Pahud, M., Coddington, N., Rodenhouse, J., Wilson, A., Benko, H & Buxton, B. (2010, October). Pen+ touch= new tools. In Proceedings of the 23nd annual ACM symposium on User interface software and technology (pp. 27–36). ACM.Google Scholar

  • [21]

    Holderness, T., & Turpin, E. (2015). White paper—PetaJakarta.org: Assessing the role of social media for civic co-management during monsoon flooding in Jakarta, Indonesia. University of Wollongong, .Wollongong.Google Scholar

  • [22]

    Houben, S., Marquardt, N., Vermeulen, J., Klokmose, C., Schöning, J., Reiterer, H., & Holz, C. (2017). Opportunities and challenges for cross-device interactions in the wild. Interactions, 24(5), 58–63.CrossrefGoogle Scholar

  • [23]

    Hurter, C., Lesbordes, R., Letondal, C., Vinot, J. L., & Conversy, S. (2012, May). Strip’TIC: exploring augmented paper strips for air traffic controllers. In Proceedings of the International Working Conference on Advanced Visual Interfaces (pp. 225–232). ACM.Google Scholar

  • [24]

    HOT-OSM. Humanitarian OpenStreetMap Team (2017). https://www.hotosm.org/. Accessed 07 August 2017.Google Scholar

  • [25]

    Isenberg, P., Isenberg, T., Hesselmann, T., Lee, B., Von Zadow, U., & Tang, A. (2013). Data visualization on interactive surfaces: A research agenda. IEEE Computer Graphics and Applications, 33(2), 16–24.CrossrefGoogle Scholar

  • [26]

    Kunz, A., Alavi, A., Landgren, J., Yantaç, A. E., Woźniak, P., Sárosi, Z., & Fjeld, M. (2013, June). Tangible tabletops for emergency response: an exploratory study. In Proceedings of the International Conference on Multimedia, Interaction, Design and Innovation (p. 10). ACM.Google Scholar

  • [27]

    LogCluster (2016). Nepal Lessons Learned Report. http://www.logcluster.org/sites/default/files/logistics_cluster_nepal_lessons_learned_report_160121.pdf. Accessed: 03 August 2017.Google Scholar

  • [28]

    Mapbox Studio. https://www.mapbox.com/mapbox-studio. Accessed: 19 September 2017.Google Scholar

  • [29]

    Mapbox GL JS. https://www.mapbox.com/mapbox-gl-js/api/. Accessed: 19 September 2017.Google Scholar

  • [30]

    Mapnificient. http://www.mapnificent.net/. Accessed: 19 September 2017.Google Scholar

  • [31]

    Nagel, T., Maitan, M., Duval, E., Vande Moere, A., Klerkx, J., Kloeckl, K., & Ratti, C. (2014, May). Touching Transport – A Case Study on Visualizing Metropolitan Public Transit on Interactive Tabletops. In Proceedings of the 2014 International Working Conference on Advanced Visual Interfaces (pp. 281–288). ACM.Google Scholar

  • [32]

    Neis, P., Singler, P., & Zipf, A. (2010). Collaborative mapping and emergency routing for disaster logistics–case studies from the Haiti earthquake and the UN Portal for Afrika (pp. 1–6).

  • [33]

    Olen, S. M., & B. Bookhagen (2016). Assessing hillslope instability and natural hazard with the World DEM and TerraSAR-X SAR data in Northeast Colombia. In TerraSAR-X/TanDEM-X Science Team Meeting 2016, edited.Google Scholar

  • [34]

    OpenStreetMap (2017). http://www.openstreetmap.org/. Accessed: 19 September 2017.Google Scholar

  • [35]

    O’Sullivan, D., Morrison, A., & Shearer, J. (2000). Using desktop GIS for the investigation of accessibility by public transport: an isochrone approach. International Journal of Geographical Information Science, 14(1), 85–104.CrossrefGoogle Scholar

  • [36]

    Paelke, V., Nebe, K., Geiger, C., Klompmaker, F., & Fischer, H. (2012). Multi-modal, multi-touch interaction with maps in disaster management applications. ISPRS-international archives of the photogrammetry, remote sensing and spatial information sciences, 39, 55–60.Google Scholar

  • [37]

    Palen, L., Soden, R., Anderson, T. J., & Barrenechea, M. (2015, April). Success & scale in a data-producing organization: The sociotechnical evolution of OpenStreetMap in response to humanitarian events. In Proceedings of the 33rd annual ACM conference on human factors in computing systems (pp. 4113–4122). ACM.Google Scholar

  • [38]

    Pellicani, R., Argentiero, I., & Spilotro, G. (2017). GIS-based predictive models for regional-scale landslide susceptibility assessment and risk mapping along road corridors. Geomatics, Natural Hazards and Risk, 1–22.Google Scholar

  • [39]

    Poiani, T. H., dos Santos Rocha, R., Degrossi, L. C., & de Albuquerque, J. P. (2016, January). Potential of collaborative mapping for disaster relief: A case study of OpenStreetMap in the Nepal Earthquake 2015. In System Sciences (HICSS), 2016 49th Hawaii International Conference on (pp. 188–197). IEEE.Google Scholar

  • [40]

    PostGIS. http://postgis.net/. Accessed: 19 September 2017.Google Scholar

  • [41]

    PostgreSQL. https://www.postgresql.org/. Accessed: 19 September 2017.Google Scholar

  • [42]

    Qin, Y., Liu, J., Wu, C., & Shi, Y. (2012, November). uEmergency: a collaborative system for emergency management on very large tabletop. In Proceedings of the 2012 ACM international conference on Interactive tabletops and surfaces (pp. 399–402). ACM.Google Scholar

  • [43]

    Roth, R. E., Ross, K. S., Finch, B. G., Luo, W., & MacEachren, A. M. (2010, September). A user-centered approach for designing and developing spatiotemporal crime analysis tools. In Proceedings of GIScience (Vol. 15).Google Scholar

  • [44]

    Roth, R. E., Ross, K. S., & MacEachren, A. M. (2015). User-centered design for interactive maps: A case study in crime analysis. ISPRS International Journal of Geo-Information, 4(1), 262–301.CrossrefGoogle Scholar

  • [45]

    Schick, A. G., Gordon, L. A., & Haka, S. (1990). Information overload: A temporal approach. Accounting, Organizations and Society, 15(3), 199–220.CrossrefGoogle Scholar

  • [46]

    Schnebele, E., & Waters, N. (2014). Road assessment after flood events using non-authoritative data. Natural Hazards and Earth System Sciences, 14(4), 1007.CrossrefGoogle Scholar

  • [47]

    Selby, M. J. (1974). Dominant geomorphic events in landform evolution. Bulletin of the International Association of Engineering Geology – Bulletin de l’Association Internationale de Géologie de l’Ingénieur, 9(1), 85–89.Google Scholar

  • [48]

    Shakeri Hossein Abad, Z., Anslow, C., & Maurer, F. (2014, November). Multi surface interactions with geospatial data: A systematic review. In Proceedings of the Ninth ACM International Conference on Interactive Tabletops and Surfaces (pp. 69–78). ACM.Google Scholar

  • [49]

    Shneiderman, B. (1996). The eyes have it: A task by data type taxonomy for information visualizations. In Visual Languages, 1996. Proceedings., IEEE Symposium on (pp. 336–343). IEEE.Google Scholar

  • [50]

    Tost, J., Ehmel, F., Heidmann, F., Olen, S. M., & Bookhagen, B. (2017). Hazards and Accessibility: Combining and Visualizing Threat and Open Infrastructure Data for Disaster Management. In Proceedings of the International Cartographic Conference 2017.Google Scholar

  • [51]

    Tufte, E. R. (1990). Envisioning information. Graphics Press.Google Scholar

  • [52]

    Voigt, S., Giulio-Tonolo, F., Lyons, J., Kucčera, J., Jones, B., Schneiderhan, T., et al.(2016). Global trends in satellite-based emergency mapping. Science, 353(6296), 247–252.CrossrefGoogle Scholar

  • [53]

    WorldDEM (2017). WorldDEMTM: Airbus Defence and Space. http://www.intelligence-airbusds.com/worlddem/. Accessed: 07 September 2017.Google Scholar

  • [54]

    Zook, M., Graham, M., Shelton, T., & Gorman, S. (2010). Volunteered geographic information and crowdsourcing disaster relief: a case study of the Haitian earthquake. World Medical & Health Policy, 2(2), 7–33.Google Scholar

About the article

Jordi Tost

Jordi Tost is since 2015 a research associate at the Interaction Design Lab (IDL) of the University of Applied Sciences Potsdam. He received a bachelor’s degree in Audiovisual Systems Engineering from the Technical University of Catalonia and a Master’s degree in Interface Design from the University of Applied Sciences Potsdam. His research focuses on Human-Computer Interaction (HCI), Information Visualization and User-Centered Design.

Frank Heidmann

Dr. Frank Heidmann is a professor of human-computer interaction and head of the Interaction Design Lab (IDL) at FH;P (Potsdam University of Applied Sciences). He teaches user experience and human-computer interaction, and conducts research on geographic visualization and natural user interfaces for smart environments, smart cities, and ubiquitous computing.


Published Online: 2017-11-24

Published in Print: 2017-12-20


The project DIGENTI is funded by the German Federal Ministry for Economic Affairs and Energy (BMWi) within the INNOspace initiative of the German Aerospace Center (DLR). We are grateful for this support.


Citation Information: i-com, Volume 16, Issue 3, Pages 223–246, ISSN (Online) 2196-6826, ISSN (Print) 1618-162X, DOI: https://doi.org/10.1515/icom-2017-0027.

Export Citation

© 2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Evanthia Dimara and Charles Perin
IEEE Transactions on Visualization and Computer Graphics, 2019, Page 1

Comments (0)

Please log in or register to comment.
Log in