Jump to ContentJump to Main Navigation
Show Summary Details
More options …

i-com

Journal of Interactive Media

Editor-in-Chief: Ziegler, Jürgen

Online
ISSN
2196-6826
See all formats and pricing
More options …
Volume 17, Issue 3

Issues

New Impressions in Interaction Design: A Task Taxonomy for Elastic Displays

Dietrich Kammer / Mathias Müller / Jan Wojdziak / Ingmar S. Franke
Published Online: 2018-11-14 | DOI: https://doi.org/10.1515/icom-2018-0021

Abstract

Novel shape-changing interfaces promise to provide a rich haptic experience for human-computer interaction. As a specific instance of shape-changing interfaces, Elastic Displays provide large interaction surfaces that can be temporally deformed using force-touch. The unique property of these displays is that they automatically return to their initial flat state. Recently, several review and position papers have stimulated a discussion towards consolidating the knowledge about shape-changing interfaces. The knowledge about Elastic Displays is similarly scattered across multiple publications from recent years. This paper contributes a task taxonomy based on productive uses of Elastic Displays found in literature, on the web, and in our interaction lab. This taxonomy emphasizes tasks, but also encompasses general aspects regarding content types, visualization technology, and interaction styles. All aspects of the taxonomy are illustrated using case studies from literature.

Keywords: Human-computer Interaction; Interaction Design; Tangible Interaction; Organic User Interfaces; Shape-changing Interfaces; Elastic Displays; Physics-based Interaction; Task Taxonomy

References

  • [1]

    Alexander, J., Roudaut, A., Steimle, J., Hornbæk, K., Alonso, M. B., Follmer, S. and Merritt, T. 2018. Grand Challenges in Shape-Changing Interface Research. In Proc. CHI ’18. ACM, New York, NY, USA, Paper 299, 14 pages. DOI: .CrossrefGoogle Scholar

  • [2]

    Agarawala, A. & Balakrishnan, R. 2006. Keepin’ it real: Pushing the desktop metaphor with physics, piles and the pen. In Proceedings of the sigchi conference on human factors in computing systems (pp. 1283–1292). CHI ’06. Montreal, Quebec, Canada: ACM, DOI: .CrossrefGoogle Scholar

  • [3]

    Cassinelli, A. and Ishikawa, M. 2005. Khronos projector. ACM SIGGRAPH 2005 Emerging technologies (New York, NY, USA).Google Scholar

  • [4]

    Dand, D., and Hemsley, R. 2013. Obake: interactions on a 2.5D elastic display. In Proc. UIST ’13 Adjunct. ACM, New York, NY, USA, 109–110. DOI: .CrossrefGoogle Scholar

  • [5]

    Follmer, S., Leithinger, D., Olwal, A., Hogge, A. and Ishii, H. 2013. inFORM: Dynamic Physical Affordances and Constraints Through Shape and Object Actuation. In Proc. UIST ’13. ACM, New York, NY, USA, 417-–426. DOI: .CrossrefGoogle Scholar

  • [6]

    Franke, I. S., Müller, M., Gründer, T., Groh, R. 2014. FlexiWall: Interaction in-between 2D and 3D Interfaces. In Proc. HCII 2014, Springer, Berlin.Google Scholar

  • [7]

    Hilsing, S. 2010. impress - a flexible display, final documentation. http://www.silkehilsing.de/impress/blog/?cat=5.Google Scholar

  • [8]

    Leithinger, D., & Ishii, H. 2010. Relief: a scalable actuated shape display. In Proc. TEI 2011, ACM Press, New York, S. 221.Google Scholar

  • [9]

    Gründer, T., Kammer, D., Brade, M., & Groh, R. 2013. Towards a design space for elastic displays. In Acm sigchi conference on human factors in computing systems - workshop: Displays take new shape: An agenda for future interactive surfaces. Paris – France.Google Scholar

  • [10]

    Humanware. Braille-Display. URL: http://www.humanware.com/en-usa/products/blindness/braille_displays.Google Scholar

  • [11]

    Jacob, R. J., Girouard, A., Hirshfield, L. M., Horn, M. S., Shaer, O., Solovey, E. T., & Zigelbaum, J. 2008. Reality-based interaction: A framework for post-wimp interfaces. In Proceedings of the sigchi conference on human factors in computing systems (pp. 201–210). CHI ’08. Florence, Italy: ACM. DOI: .CrossrefGoogle Scholar

  • [12]

    Jansen, Y., Karrer, T. and Borchers, J. 2011. MudPad: tactile feedback for touch surfaces. In Proc. of Extended Abstracts at CHI’11 (New York, NY, USA), 323–328.Google Scholar

  • [13]

    Kammer, D., Keck, M., Müller, M., Gründer, T., Groh, R. 2017. Exploring Big Data Landscapes with Elastic Displays. In: Burghardt, M., Wimmer, R., Wolff, C. & Womser-Hacker, C. (Hrsg.), Mensch und Computer 2017 – Workshopband. Gesellschaft für Informatik e.V., Regensburg.Google Scholar

  • [14]

    Khalilbeigi, M., Lissermann, R., Kleine, W. and Steimle, J. 2012. FoldMe: interacting with double-sided foldable displays. In Proc. of the TEI’12 (New York, NY ,USA), 33–40.Google Scholar

  • [15]

    Khalilbeigi, M., Lissermann, R., Mühlhäuser, M. and Steimle, J. 2011. Xpaaand: interaction techniques for rollable displays. In Proc. of CHI’11 (New York, NY, USA), 2729–2732.Google Scholar

  • [16]

    Kingsley, P., Rossiter, J. and Subramanian, S. 2012. eTable: A Haptic Elastic Table for 3D Multi-touch Interactions, University of Bristol. https://youtu.be/v2A4bLSiX6A.Google Scholar

  • [17]

    Kyungwon Yun, JunBong Song, Keehong Youn, Sungmin Cho, and Hyunwoo Bang. 2013. ElaScreen: exploring multi-dimensional data using elastic screen. In CHI ’13 Extended Abstracts on Human Factors in Computing Systems (CHI EA ’13). ACM, New York, NY, USA, 1311–1316. DOI: .CrossrefGoogle Scholar

  • [18]

    Müller, M., Gründer, T., & Groh, R. 2015. Data exploration on elastic displays using physical metaphors. In Proceedings xcoax 2015.Google Scholar

  • [19]

    Peschke, J., Göbel, F., Gründer, T., Keck, M., Kammer, D., & Groh, R. 2012. Depthtouch: An elastic surface for tangible computing. In Proceedings of the international working conference on advanced visual interfaces (pp. 770–771). AVI ’12. Capri Island, Italy: ACM. DOI: .CrossrefGoogle Scholar

  • [20]

    Poupyrev, I., T. Nashida, S. Maruyama, J. Rekimoto, and Y. Yamaji. 2004. Lumen: Interactive visual and shape display for calm computing. In Proc. SIGGRAPH 2004 Conference Abstracts and Applications, Emerging Technologies, ACM Press.Google Scholar

  • [21]

    Riedenklau, E., Hermann, T., & Ritter, H. 2012. An integrated multi-modal actuated tangible user interface for distributed collaborative planning. In Proc. TEI 2012. ACM Press, S. 169–174.Google Scholar

  • [22]

    Sahoo, D. R., Hornbæk, K. and Subramanian, S. 2016. TableHop: An Actuated Fabric Display Using Transparent Electrodes. In Proc. CHI ’16. ACM, New York, NY, USA, 3767–3780. DOI: .CrossrefGoogle Scholar

  • [23]

    Sato, T., Mamiya, H., Koike, H. and Fukuchi, K. 2009. PhotoelasticTouch. In Proc. of UIST ’09 (New York, NY, USA), 43–50.Google Scholar

  • [24]

    Sato, T., Takahashi, N., Matoba, Y. and Koike, H. 2012. Interactive surface that have dynamic softness control. In Proc. of AVI’12 (New York, NY, USA), 796–797.Google Scholar

  • [25]

    Sinclair, M., Pahud, M., & Benko, H. 2014. TouchMover 2.0 - 3D touchscreen with force feedback and haptic texture. In Proc. HAPTICS 2014, IEEE, S. 1–6.Google Scholar

  • [26]

    Stevenson, A., Perez, C., and Vertegaal, R. 2010. An inflatable hemispherical multi-touch display. In Proc. TEI 2010, ACM Press, 289–292.Google Scholar

  • [27]

    Troiano, G. M., Pedersen, E. W., & Hornbæk, K. 2014. User-defined gestures for elastic, deformable displays. In Proceedings of the 2014 international working conference on advanced visual interfaces (pp. 1–8). AVI ’14. Como, Italy: ACM. DOI: .CrossrefGoogle Scholar

  • [28]

    Vlack, K., Mizota, T., Kawakami, N., Kamiyama, K., Kajimoto, H., & Tachi, S. 2005. GelForce: a vision-based traction field computer interface. In Ext. Abstracts CHI 2005, New York: ACM, S. 1154–1155.Google Scholar

  • [29]

    Watanabe, Y., Cassinelli, A., Komuro, T., and Ishikawa, M. 2008. The deformable workspace: A membrane between real and virtual space, In Proc 3rd IEEE International Workshop on Horizontal Interactive Human Computer Systems.Google Scholar

  • [30]

    Müller, M., Knöfel, A., Gründer, T., Franke, I. S., & Groh, R. 2014. Flexiwall: Exploring layered data with elastic displays. In Proceedings its 2014, november 16.–19., Germany.Google Scholar

  • [31]

    Müller, M., Keck, M., Gründer, T., Hube, N., Groh, R. 2017. A Zoomable Product Browser for Elastic Displays. In: 5th Conference on Computation, Communication, Aesthetics & X, Proceedings xCoAx 2017, S. 1–10.Google Scholar

  • [32]

    Sturdee, M., Alexander, J. 2018. Analysis and Classification of Shape-Changing Interfaces for Design and Application-based Research. ACM Comput. Surv. 51, 1, Article 2 (January 2018), 32 pages. DOI: .CrossrefWeb of ScienceGoogle Scholar

  • [33]

    Rasmussen, M. K., Pedersen, E. W., Petersen, M. G., Hornbæk, K. 2012. Shape-changing interfaces: a review of the design space and open research questions. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’12). ACM, New York, NY, USA, 735–744. DOI: .CrossrefGoogle Scholar

  • [34]

    Vertegaal, R. & Poupyrev, I. 2008. Introduction – Organic user interfaces. Commun. ACM 51, 6 (June 2008), 26–30. DOI: .CrossrefGoogle Scholar

  • [35]

    Shaer, O. & Hornecker, E. 2010. Tangible User Interfaces: Past, Present, and Future Directions. Found. Trends Hum.-Comput. Interact. 3, 1–2 (January 2010), 1–137. DOI: .CrossrefGoogle Scholar

  • [36]

    Shneiderman, B. 1996. The eyes have it: A task by data type taxonomy for information visualizations. In Visual Languages, 1996. Proceedings., IEEE Symposium on, IEEE, 336–343.Google Scholar

  • [37]

    Keck, M., Herrmann, M., Both, A., Gaertner, R., Groh, R. 2013. Improving Motive-Based Search: Utilization of Vague Feelings and Ideas in the Process of Information Seeking Conference, Proceedings of the First International Conference on Distributed, Ambient, and Pervasive Interactions – Volume 8028, Springer-Verlag New York, Inc., New York, NY, USA.Google Scholar

About the article

Dietrich Kammer

Dietrich Kammer is a postdoctoral researcher at Technische Universität Dresden, affiliated with the Chair of Media Design. His research is focused on the formalization of gestural input, especially with regards to multitouch technology. Further areas of research are semiotics in HCI, computer graphics, and information visualization.

Mathias Müller

Mathias Müller is researcher at Technische Universität Dresden, at the Chair of Media Design. His research is focused on virtual, mixed, and augmented reality, data visualization, and HCI. He has many years of experience in the research of interaction and visualization technologies, including elastic displays and head-mounted displays.

Jan Wojdziak

Jan Wojdziak is a postdoctoral researcher at Technische Universität Dresden in Germany as well as co-founder and chief of operations (COO) at GTV – Gesellschaft für Technische Visualistik mbH. His research interests include applied visualistic and interaction design in the range of three-dimensional computer graphics.

Ingmar S. Franke

Ingmar S. Franke is a graduate in Architecture at the University of Applied Sciences Magdeburg as well as in Computational Visualistics at the Institute Simulation and Computer Graphics at Otto-von-Guericke University. Later he worked as a research assistant at Fraunhofer-Gesellschaft, Institute for Factory Planning and Factory Automation. He teaches at the Chair of Media Design at Department of Computer Science, Technische Universität Dresden, where he also obtained his doctorate. His research interests are in Gestaltung and User Interfaces. He is co-founder and Managing Director of company Technische Visualistik.


Published Online: 2018-11-14

Published in Print: 2018-12-19


Citation Information: i-com, Volume 17, Issue 3, Pages 247–255, ISSN (Online) 2196-6826, ISSN (Print) 1618-162X, DOI: https://doi.org/10.1515/icom-2018-0021.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in