Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Papers on Global Change IGBP

1 Issue per year


CiteScore 2016: 0.11

SCImago Journal Rank (SJR) 2016: 0.113
Source Normalized Impact per Paper (SNIP) 2016: 0.746

Open Access
Online
ISSN
1730-802X
See all formats and pricing
More options …

Recent Rapid Climate Changes in Antarctic and their Influence on Low Diversity Ecosystems

Katarzyna J. Chwedorzewska
  • Corresponding author
  • Department of Antarctic Biology, Polish Academy of Sciences Ustrzycka 10/12, 02-141 Warsaw, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2011-02-08 | DOI: https://doi.org/10.2478/v10190-010-0002-6

ABSTRACT

The geographic position, astronomic factors (e.g. the Earth’s maximum distance from the Sun during winter), ice cover and altitude are the main factors affecting the climate of the Antarctic, which is the coldest place on Earth. Parts of Antarctica are facing the most rapid rates of anthropogenic climate change currently seen on the planet. Climate changes are occurring throughout Antarctica, affecting three major groups of environmental variables of considerable biological significance: temperature, water, UV-B radiation.

Low diversity ecosystems are expected to be more vulnerable to global changes than high diversity ecosystems

KEYWORDS : Antarctica; climate change; nutrients; ozone hole; temperature; UV-radiation; water relations; human impact

References

  • Adams B., Bardgett R.D., Ayres E., Wall D.H., Aislabie J., Bamforth S., Bargagli R., Cary C., Cavacini P., Connell L., Convey P., Fell J., Frati F., Hogg I., Newsham N., O’Donnell A., Russell N., Seppelt R. and Stevens M.I., 2006, Diversity and distribution of Victoria Land biota, Soil Biol. Biochem., 38, 3003-3018.CrossrefGoogle Scholar

  • Arnold R.J., Convey P., Hughes K.A., Wynn-Williams D.D., 2003, Seasonal periodicity of physical and edaphic factors, and microalgae in Antarctic fellfi elds, Polar Biol., 26, 396-403.Google Scholar

  • Bargagli R., 2005, Antarctic ecosystems, Ecological Studies Series 175, Springer, Berlin, 1-395.Google Scholar

  • Birkenmajer K., Ochyra R., Olsson I.U., Stuchlik L., 1985, Mid-Holocene radiocarbonated peat at Admiralty Bay, King George Island (South Shetland Islands, West Antarctica), Bull. Pol. Acad. Sci, Earth Sci., 33, 7-13.Google Scholar

  • Block W., 1984, Terrestrial microbiology, invertebrates and ecosystems, [in:] Laws R.M. (ed.), Antarctic ecology, Academic Press, London, 163-236.Google Scholar

  • Blume H.P., Bolter M., 1993, Soils of Casey Station, Antarctica, [in:] Gilichinski D. (ed.), Proceedings of 1st International Symposium on Cryopedo, Pushchino, Inst. Soil Sci. Photosynth, Pushchino, 96-103.Google Scholar

  • Budd W.F., Simmonds L., 1991, The impact of global warming on the Antarctic mass balance and global sea level, [in:] Weller G., Wilson C.L., Severin B.A.B. (eds), Proceedings of the International Conference on the Role of Polar Regions in Global Change, Geophys, Inst. Univ. Alaska, Fairbanks, 489-494.Google Scholar

  • Campbell I.B., Claridge G.G.C., Balks M.R., 1994, The effect of human activities on moisture content of soil and underlying permafrost from the McMurdo Sound region, Antarctica, Antar. Sci., 6, 307-314.Google Scholar

  • Clarke A., Barnes D.K.A., Hodgson D.A., 2005, How isolated is Antarctica?, Trends Ecol. Evol., 20, 1-3.CrossrefPubMedGoogle Scholar

  • Chown S.L., Convey P., 2007, Spatial and temporal variability across life’s hierarchies in the terrestrial Antarctic, Phil. Trans. R. Soc. B, 362, 2307-2331.Google Scholar

  • Chwedorzewska K.J., 2008, Poa annua L. in Antarctic - searching for the source of introduction, Polar Biol., 31, 263-268.CrossrefGoogle Scholar

  • Chwedorzewska K.J., 2009, Terrestrial Antarctic Ecosystems at the Changing World - an overview, Pol. Polar Res., 30, 263-273.CrossrefGoogle Scholar

  • Chwedorzewska K.J., Korczak M., 2010, Human impact upon the environment in the vicinity of Arctowski Station, King George Island, Antarctica, Pol. Polar Res., 31, 45-60.CrossrefGoogle Scholar

  • Cockell C.S., Rettberg P., Horneck G., Wynn-Williams D.D., Scherer K., Gugg-Helminger A., 2002, Infl uence of ice and snow covers on the UV exposure of terrestrial microbial communities: dosimetric studies, J. Photochem. Photobiol. B: Biology, 68, 23-32.CrossrefGoogle Scholar

  • Convey P., 1996, Reproduction of Antarctic fl owering plants, Antarct. Sci., 8, 127-134.Google Scholar

  • Convey P., 2003, Soil faunal community response to environmental manipulation on Alexander Island, southern maritime Antarctic, [in:] VIII SCAR International Biology, Huiskes A.H.L., Gieskes W.W.C., Rozema J., Schorno R.M.L., van der Vies S., Wolff W. J. (eds), Symposium: Antarctic Biology in a Global Context, Backhuys, Leiden, 74-78.Google Scholar

  • Convey P., 2005, Antarctic Terrestrial Ecosystems: Responses to Environmental Change, Polarforschung, 75, 101-111.Google Scholar

  • Convey P., 2006, Antarctic climate change and its infl uences on terrestrial ecosystems, [in:] Bergstrom D.M., Convey P., Huiskes A.H.L. (eds), Trends in Antarctic Terrestrial and Limnetic Ecosystems: Antarctica as a Global Indicator, Springer, Dordrecht, 253-272.Google Scholar

  • Convey P., Lewis Smith R.I., 1993, Investment in sexual reproduction by Antarctic mosses, Oikos, 68, 293-302.Google Scholar

  • Convey P., Smith R.I.L., 2006, Responses of terrestrial Antarctic ecosystems to climate change, Plant Ecol., 182, 1-10.Google Scholar

  • Cowan D.A., Ah Tow L., 2005, Dissemination and survival of non-indigenous bacterial genomes in pristine Antarctic environments, Extremophiles, 9, 385-389.PubMedCrossrefGoogle Scholar

  • Danks H.V., 1999, Life cycles in polar arthropods - fl exible or programmed?, Eur. J. Entomol., 96, 83-102.Google Scholar

  • Davey M.C., 1997, Effects of continuous and repeated dehydration on carbon fi xation by bryophytes from the maritime Antarctic, Oecol., 110, 25-31.CrossrefGoogle Scholar

  • Doran P.T., Proscu J.C., Lyons W.B., Walsh J.E., Fountain A.G., McKnight D.M., Moorhead D.L., Virginia R.A., Wall D.H., Clow G.D., Fristen C.H., McKay C.P., Parsons A.N., 2002, Antarctic climate cooling and terrestrial ecosystem response, Nature, 415, 517-520.Google Scholar

  • Engelen A., Convey P., Hodgson D.A., Worland M. R., Ott S., 2008, Soil properties of an Antarctic inland site: implications for ecosystem development, Polar Biol., 31, 1453-1460.CrossrefGoogle Scholar

  • Farman J.C., Gardiner B.G., Shanklin J.D., 1985, Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction, Nature, 315, 207-210.Google Scholar

  • Fowbert J.A. and Smith R.I.L., 1994, Rapid population increase in native vascular plants in the Argentine Islands, Antarctic Peninsula, Arct. Alpine Res., 26, 290-296.CrossrefGoogle Scholar

  • Fox A.J. and Cooper A.P.R., 1998, Climate-Change Indicators from Archival Aerial Photography of the Antarctic Peninsula, Ann. Glaciol., 27, 636-642.Google Scholar

  • Freckman D.W., Virginia R.A., 1997, Low-diversity Antarctic soil nematode communities: distribution and response to disturbance, Ecol., 78, 363-369.CrossrefGoogle Scholar

  • Frenot Y., Gloaguen J.C. Masse L., Lebouvier M., 2001, Human activities, ecosystem disturbance and plant invasions in sub−Antarctic Crozet, Kerguelen and Amsterdam Islands, Biol Conserv., 101, 33-50.CrossrefGoogle Scholar

  • Frenot Y., Chown S.L., Whinam J., Selkirk P.M., Convey P., Skotnicki M. and Bergstrom D.M., 2005, Biological invasions in the Antarctic: extent, impacts and implications, Biol. Rev., 80, 45-72.CrossrefGoogle Scholar

  • Gerighausen U., Brautigam K., Mustafa O., Peter H.U., 2003, Expansion of vascular plants on an Antarctic island - a consequence of climate change? [in:] Huiskes A.H.L., Gieskes W.W.C., Rozema J., Schorno R.M.L.,. vad der Vies S.M, Wolff W.J. (eds), Antarctic biology in a global context, Backhuys, Leiden, 79-83.Google Scholar

  • Grzesiak J., Żmuda-Baranowska M., Borsuk P., Zdanowski M., 2009, Microbial community at the front of Ecology Glacier (King George Island, Antarctica): Initial observations, Polish Pol. Res., 30, 37-47.Google Scholar

  • Hall K.J., Walton D.W.H., 1992, Rock weathering, soil development and colonisation under a changing climate, Philos Trans R Soc London Ser B, 338, 269-277.Google Scholar

  • Hogg I.D., Cary S.C., Convey P., Newsham K.K., O’Donnell T., Adams B.J., Aislabie J., Frati F.F., Stevens M.I., Wall D.H., 2006, Biotic interactions in Antarctic terrestrial ecosystems: are they a factor? Soil Biol. Biochem., 38, 3035-3040.CrossrefGoogle Scholar

  • Holgate M. W., 1970, Antarctic ecology, Academic Press, London and New York, 604 pp.Google Scholar

  • Karentz D., 1991, Pollen and spores transport into the Antarctic, Polar Biol., 8, 173-180.Google Scholar

  • Karentz D., 1994, Ultraviolet tolerance mechanisms in Antarctic marine organisms, [in:] Weiler C.S., Penhale P.A. (eds), Ultraviolet radiation in Antarctica: measurements and biological effects, Washington, DC: American Geophysical Union, 93-110.Google Scholar

  • Kennedy A.D., 1993, Water as a limiting factor in the Antarctic terrestrial environment: a biogeographical synthesis, Arct. Alpine Res., 25, 308-315.CrossrefGoogle Scholar

  • King D., 2005, Climate change: the science and the policy, J. Appl. Ecol., 42, 779-783.CrossrefGoogle Scholar

  • King J.C., Turner J., Marshall G.J., Conolley W.M., Lachlan-Cope T.A., 2003, Antarctic Peninsula climate variability and its causes as revealed by analysis of instrumental records, Antarct. Res. Ser., 79, 17-30.Google Scholar

  • Lewis-Smith L.R.I., 1984, Colonization and recovery by cryptogams following recent volcanic activity on Deception I., South Shetland I., Brit Antarct Surv Bull., 62, 25-51.Google Scholar

  • Lewis-Smith L.R.I., 1991, Exotic sporomorpha as indicators of potential immigrant colonists in Antarctica, Grana, 30, 313-324.CrossrefGoogle Scholar

  • Lewis-Smith L.R.I., 1993, The role of bryophyte propagule banks in primary succession: case study of an Antarctic fellfi eld soil, [in:] Milesand J., Walton D.W.H. (eds), Primary succession on land, Blackwell Scientifi c Publishing, Oxford, 55-77.Google Scholar

  • Lewis-Smith R.I.L., 2001, Plant colonization response to climate change in the Antarctic, Folia Fac. Sci. Nat. Univ. Masarykianae Brunensis, Geographia, 25, 19-33.Google Scholar

  • Linskens H.F., Bergagli R., Cresti M., Focardi, S., 1993, Entrapment of long-distance transported pollen grains by various moss species in coastal Victoria Land Antarctica, Polar Biol., 13, 81-87.CrossrefGoogle Scholar

  • Lovelock C.E., Osmond C.B., Seppelt R.D., 1995, Photoinhibition in the Antarctic moss Grimmia antarctica Card. when exposed to cycles of freezing and thawing, Plant, Cell and Environment, 18, 1395-1402.Google Scholar

  • Marchant H.J., 1997, Impact of ozone depletion on Antarctic organisms, [in:] Walton D. (ed.), Antarctic Communities. Species, structure and survival, Cambridge University Press, Cambridge, 367-374.Google Scholar

  • McGraw J.B., Day T.A., 1997, Size and characteristics of a natural seed bank in Antarctica, Arct. Antarct. Alpine Res., 29, 213-216.CrossrefGoogle Scholar

  • Melick D.R., Seppelt R.D., 1992, Loss of soluble carbohydrates and changes in freezing point of Antarctic bryophytes after leaching and repeated freeze-thaw cycles, Antarct. Sci., 4, 399-404.Google Scholar

  • Melick D.R., Hovenden M.J., Seppelt R.D., 1994, Phytogeography of bryophyte and lichen vegetation in the Windmill Islands, Wilkes Land, Continental Antarctica, Vegetation, 111, 71-87.Google Scholar

  • Mercer J.H., 1978, West Antarctic ice sheet and CO2 greenhouse effect: a threat of disaster, Nature, 271, 321-325.Google Scholar

  • Mietelski J.W., Olech M.A., Sobiech-Matura K., Howard B., Gaca P., Zwolak M., Błażej S., Tomankiewicz E., 2008, 137Cs, 40K, 238Pu, 239+240Pu and 90Sr in biological samples from King George Island (Southern Shetlands) in Antarctica, Polar Biol., 31, 1081-1089.CrossrefGoogle Scholar

  • Noon P.E, Birks H.J.B., Jones V.J., Ellis-Evans J.C., 2001, Quantitative models for reconstructing catchment ice-extent using physical-chemical characteristics of lake sediments, J. Palaeolimnol., 25, 375-392.Google Scholar

  • Olech M., 1996, Human impact on terrestrial ecosystems in west Antarctica, Proceedings of the NIPR Symposium on Polar Biology, 9, 299-306.Google Scholar

  • Olech M., 2004, Lichens of King George Island Antarctica, The Institute of Botany of the Jagiellonian University, Cracow, 391 pp.Google Scholar

  • Ochyra R., Lewis Smith L.R.I. and Bednarek-Ochyra H., 2008, The illustrated moss fl ora of Antarctica, Cambridge University Press, Cambridge, 685 pp.Google Scholar

  • Peck L., Convey P., Barnes D.K.A., 2006, Environmental constraints on life histories in Antarctic ecosystems: tempos, timings and predictability, Biol. Rev., 81, 75-109.CrossrefGoogle Scholar

  • Pugh P.J.A., 1997, Acarine colonisation of Antarctica and the islands of the Southern Ocean: the role of zoochoria, Polar Rec., 33, 113-122.CrossrefGoogle Scholar

  • Quayle W.C, Convey P., Peck L.S., Ellis-Evans J.C., Butler H.G., Peat H.J., 2003, Ecological responses of maritime Antarctic lakes to regional climate change, Antarct. Res. Ser., 79, 159-170.Google Scholar

  • Robinson S., Wasley J., Tobin A., 2003. Living on the edge-plants and global change in continental and maritime Antarctica, Global Change Biology, 9, 1681-1717.Google Scholar

  • Rozema J., Bjorn L.O., Bornman J. F., Gaberščik A., Hader D.P., Trost T., Germ M., Klisch M., Groniger A., Sinha R.P., Lebert M., He Y.Y., Buffoni-Hall R., de Bakker N.V.J., van de Staaij J., Meijkamp R.B., 2002, The role of UV-B radiation in aquatic and terrestrial ecosystems - an experimental and functional analysis of the evolution of UV absorbing compounds, Journal of Photochemistry and Photobiology B: Biology, 66, 2-12.Google Scholar

  • Sabburg J., Wong J., 2000, The effect of clouds on enhancing UVB irradiance at the earth’s surface: a one year stud, Geophisical Res. Let., 27, 3337-3340.Google Scholar

  • Santas R., Koussoulaki A., Hader D.P., 1997, In assessing biological UVB effects, natural fl uctuations of solar radiation should be taken into account, Plant Ecol., 128, 93-97.CrossrefGoogle Scholar

  • Schlensog M., Pannewitz S., Green T.G.A., Schroeter. B., 2004, Metabolic recovery of continental antarctic cryptogams after winter, Polar Biol., 27, 399-408.CrossrefGoogle Scholar

  • Selkirk P.M., Skotnicki M., Adam K.D., Connett M.B., Dale T., Joe T.W., Amstrong J., 1997, Genetic variation in Antarctic populations of the moss Sarconeurum glaciale, Polar Biol., 18, 344-350.CrossrefGoogle Scholar

  • Smith V.R., Ainley D., Baker K., Domack E., Emslie S., Fraser B., Kennett J., Leventer A., Mosley-Thompson E., Stammerjohn S., Vernet M., 1999, Marine Ecosystem Sensitivity to Climate Change - Historical Observations and Paleoecological Records Reveal Ecological Transitions in the Antarctic Peninsula Region, Biosci., 40, 393-404.CrossrefGoogle Scholar

  • Turner J., Colwell S.R., Marshall G.J., Lachilan-Cope T.A., Carleton A.M., Jones P.D., Lagun V., Reid P.A., Iagovkuna S., 2005, Antarctic climate change during the last 50 years, International Journal of Climatology, 25, 279-294.Google Scholar

  • Vaughan D.G., Doake C.S.M., 1996, Recent atmospheric warming and retreat of ice shelves on the Antarctic Peninsula, Nature, 379, 328-331.Google Scholar

  • Vaughan D.G., Marshall G.J., Connolley W.C., King J.C., Mulvaney R., 2001, Devil in the detail, Science, 293, 1777-1779.Google Scholar

  • Vaughan D.G., 2006, Trends in melting conditions on the Antarctic Peninsula and their implications for ice sheet mass balance, Arct. Antarct. Alpine Res., 38, 147-152.CrossrefGoogle Scholar

  • Vincent W.F., 1988, Microbial ecosystems of Antarctica, Cambridge University, Press, Cambridge, XIV, 1-304.Google Scholar

  • Wynn-Williams D.D., 1993, Microbial processes and the initial stabilization of fell Weld soil, [in:] Miles J., Walton D.W.H. (eds), Primary Succession on Land, Blackwell, Oxford, 17-32.Google Scholar

  • Wynn-Williams D.D., 1994, Potential effects of ultraviolet radiation on Antarctic primary terrestrial colonizers: cyanobacteria, algae, and cryptogams, Antarct. Res. Ser., 62, 243-257.Google Scholar

About the article

Published Online: 2011-02-08

Published in Print: 2010-01-01


Citation Information: Papers on Global Change IGBP, ISSN (Online) 1730-802X, DOI: https://doi.org/10.2478/v10190-010-0002-6.

Export Citation

© 2015. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Katarzyna Chwedorzewska and Piotr Bednarek
Polish Polar Research, 2012, Volume 33, Number 1

Comments (0)

Please log in or register to comment.
Log in