Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Applied Mechanics and Engineering

The Journal of University of Zielona Góra

Editor-in-Chief: Walicki, Edward

4 Issues per year

CiteScore 2016: 0.12

SCImago Journal Rank (SJR) 2016: 0.127
Source Normalized Impact per Paper (SNIP) 2016: 0.063

Open Access
See all formats and pricing
More options …

Stored Energy of Plastic Deformation in Tube Bending Processes

Z. Śloderbach
  • Corresponding author
  • Opole University of Technology Faculty of Applications of Chemistry and Mechanics 45-036 Opole, ul. Luboszycka 7, POLAND
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ J. Pająk
  • Opole University of Technology Faculty of Applications of Chemistry and Mechanics 45-036 Opole, ul. Luboszycka 7, POLAND
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-04-19 | DOI: https://doi.org/10.2478/ijame-2013-0015

The paper presents an aproximate analytic method for determination of the stored energy of plastic deformation during cold bending of metal tubes at bending machines. Calculations were performed for outer points of the tube layers subjected to tension and compression (the points of maximum strains). The percentage of stored energy related to the plastic strain work was determined and the results were presented in graphs. The influence and importance of the stored energy of plastic deformation on the service life of pipeline bends are discussed.

Keywords : plastic deformation; tube bending; stored energy; austenitic steel; boiler steel

  • Adam C.M. and Wolfenden A. (1978): The influence of microstructure on the energy stored in deformed aluminiumand aluminium alloys. - Acta Metallurgica, vol.26, pp.1307-1315.CrossrefGoogle Scholar

  • Bever M.B., Holt D.L. and Titchaner A.L. (1973): The stored energy of cold work. - Progress in Materials Science, vol.17, Oxford, Pergamon Press.Google Scholar

  • Buchdahl H.A. (1966): The concepts of classical thermodynamics. - Cambrigde Univ. Press.Google Scholar

  • Chrysochoos A., Maissonneuve O., Martin G., Caumon H. and Chezeaux J.C. (1989): Plastic and dissipated work andstored energy. - Nuclear Engineering and Design, vol.114, Notrh-Holland, Amsterdam, pp.323-333.Google Scholar

  • Chrysochoos A. and Martin G. (1989): Tensile test microcalorimetry for thermomechanical behaviour law analysis. - Materials Science and Engineering, A 108, pp.25-32.Google Scholar

  • Chrysochoos A. and Belmanjoub F. (1992): Thermographic analysis of thermomechanical couplings. - Archives of Mechanics, vol.44, No.1, pp.55-68.Google Scholar

  • Cottrell A.H. (1964): The Mechanical Properties of Matter. - New York: John Willey and Sons.Google Scholar

  • El-Sebaie M.G. and P.B. (1972): Plastic instability conditions in the deep-drawing of a circular blank of sheet metal. - Int. J. Mech. Sci., vol.14, pp.535-556.Google Scholar

  • Franz W.D. (1961): Das Kalt-Biegen von Rohren. - Berlin: Springer-Verlag.Google Scholar

  • Franz W.D. (1969): Numerisch gesteuerte Rohrkaltbiegemaschinen. - Werkstatt und Betrieb, Heft 9/69.Google Scholar

  • Gadaj S.P., Nowacki W.K. and Pieczyska E. (1996): Changes of temperature during the simple shear test of stainlesssteel. - Archives of Mechanics, vol.48, 4.Google Scholar

  • Kocańda A. (1998): Termomechanical bulk forming of steel. - Proceedings of the Riso International Symposium on Metallurgy and Materials Science, PRISEA, pp.1-97.Google Scholar

  • Marciniak Z. (1971): Limit Deformations in Sheet Metal Stamping. - Warszawa: WNT.Google Scholar

  • Marciniak Z. and Konieczny A. (1987): Modelling the variation of the yield stress within the temperature range typicalfor cold and warm metal forming. - J. Mech. Work. Technology, vol.15, pp.15-37.CrossrefGoogle Scholar

  • Oliferuk W., Świątnicki W.A. and Grabski M.W. (1993): Rate of energy storage and microstructure evolution duringthe tensile deformation of austenic steel. - Materials Science and Engineering, A 161, Elsevier Science S.A., pp.55-63.Google Scholar

  • Oliferuk W., Świątnicki W.A. and Grabski M.W. (1995): Effect of the grain size on the rate of energy storage duringtensile deformation of an austenitic steel. - Materials Science and Engineering, A 197, Elsevier Science S.A., pp.49-58.Google Scholar

  • Oliferuk W., Korbel A. and Grabski M.W. (1996): Mode of deformation and the rate of energy storage during uniaxialtensile deformation of austenitic steel. - Materials Science and Engineering, A 220, Elsevier Science S.A., pp.123-128.Google Scholar

  • Oliferuk W. (1997): Energy storage process and its relation to material structure in austenic steel tested in simple tension. (in Polish) - IFTR Reports - Polish Academy of Sciences, No 11/1997, Warszawa.Google Scholar

  • Perzyna P. (1978): Thermodynamics of Inelastic Materials. - Warszawa: PWN.Google Scholar

  • Raniecki B. and Sawczuk A. (1975): Thermal effects in plasticity. Part I: Coupled theory. - ZAMM, vol.55, pp.333-341.Google Scholar

  • Raniecki B. (1977): Problems of applied thermoplasticity [in Polish]. - IFTR-Reports, No.29, Warszawa.Google Scholar

  • Soós E. and Badea L. (1997): A new theory of the stored energy in elasto-plasticity and the torsion test. - Eur. J. Mech., A/Solids, vol.16, No.3, Gauthier-Villars, pp.467-500.Google Scholar

  • Śloderbach Z. (1983): Generalized coupled thermoplasticity. Part I. Fundamental equations and identities. - Archives of Mechanics, vol.35, No.3, Warszawa, pp.337-349.Google Scholar

  • Śloderbach Z. (1999): A model of deformation geometry in pipe bending processes. - Engineering Transactions, vol.47, pp.3-20.Google Scholar

  • Śloderbach Z. and Rechul Z. (2000): Effect of strain hardening and normal anisotropy on allowable values of strainand stress in pipe-bending processes. - Journal of Theoretical and Applied Mechanics, PTMT I S, No.4, vol.38, Warszawa, pp.843-859.Google Scholar

  • Śloderbach Z. and Rechul Z. (2006): A thermodynamic approach to the stored energy concept. - Journal of Technical Physics, vol. XLVII, No.2, pp.83-102.Google Scholar

  • Życzkowski M. and Tran L.B. (1997): Interaction curves corresponding to the decohesive carrying capacity of a cylindricalshell under combined loading. - Int. J. Plasticity, vol.13, pp.551-570.CrossrefGoogle Scholar

About the article

Published Online: 2013-04-19

Published in Print: 2013-03-01

Citation Information: International Journal of Applied Mechanics and Engineering, Volume 18, Issue 1, Pages 235–248, ISSN (Print) 1734-4492, DOI: https://doi.org/10.2478/ijame-2013-0015.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Z. Śloderbach and J. Pająk
Continuum Mechanics and Thermodynamics, 2017
Zdzisław Śloderbach and Janusz Pajak
Journal of Thermal Stresses, 2017, Volume 40, Number 2, Page 255
Z. Śloderbach
International Journal of Applied Mechanics and Engineering, 2016, Volume 21, Number 1

Comments (0)

Please log in or register to comment.
Log in