Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Applied Mechanics and Engineering

The Journal of University of Zielona Góra

Editor-in-Chief: Walicki, Edward

4 Issues per year


CiteScore 2016: 0.12

SCImago Journal Rank (SJR) 2016: 0.127
Source Normalized Impact per Paper (SNIP) 2016: 0.063

Open Access
Online
ISSN
2353-9003
See all formats and pricing
More options …

Study of magnetic field dependent viscosity on a soret driven ferrothermohaline convection in a rotating porous medium

R. Hemalatha
Published Online: 2014-03-07 | DOI: https://doi.org/10.2478/ijame-2014-0006

Abstract

The effect of a magnetic field dependent viscosity on a Soret driven ferro thermohaline convection in a rotating porous medium has been investigated using the linear stability analysis. The normal mode technique is applied. A wide range of values of the Soret parameter, magnetization parameter, the magnetic field dependent viscosity, Taylor number and the permeability of porous medium have been considered. A Brinkman model is used. Both stationary and oscillatory instabilities have been obtained. It is found that the system stabilizes only through oscillatory mode of instability. It is found that the magnetization parameter and the permeability of the porous medium destabilize the system and the Soret parameter, the magnetic field dependent viscosity and the Taylor number tend to stabilize the system. The results are presented numerically and graphically

Keywords: Soret parameter; field dependent viscosity; oscillatory instability; linear stability; Taylor number; permeability of porous medium

References

  • Chandrasekhar S. (1961): Hydrodynamic and Hydromagnetic Stability. - London: Oxford University Press.Google Scholar

  • Charier-Mojtabi M.C., Elhajjar B. and Mojtabi A. (2007): Analytical and numerical stability analysis of Soret driven convection in a horizontal porous layer. - Phys. of Fluids, vol.19, pp.124104-13.Google Scholar

  • Cowley M.D and Rosensweig R.E. (1967): The interfacial stability of a ferromagnetic fluid. - J. Fluid Mech., vol.30, pp.671-688.Google Scholar

  • Finlayson B.A. (1970): Convective instability of ferromagnetic fluids. - J. Fluid. Mech., vol.40, pp.753-767.CrossrefGoogle Scholar

  • Hemalatha R. and Sivapraba N. (2012): Effect of magnetic field dependent viscosity on ferroconvection in a sparsely distributed anisotropic porous medium in the presence of horizontal thermal gradient. - Ind. J. Pure. Appl. Phys., vol.50, pp.907-914.Google Scholar

  • Hemalatha R., Sekar R. and Vaidyanathan G. (2012 ): Effect of dust particles on a Soret- driven ferro thermohaline convection in a rotating medium. - Int. J. of Appl., Mech. and Engng., vol.17, No.2, pp.367-381.Google Scholar

  • Hemalatha R., Sekar R. and Vaidyanathan G. (2011): Effect of rotation on a Soret- driven thermohaline convection in dusty ferrofluids saturating a porous medium. - Int. J. of Appl., Mech. and Engng., vol.16, No.4, pp.1021-1036.Google Scholar

  • Hupper H.E and Turner J.S. (1981): Double diffusive convection. - J. Fluid Mech., vol.106, pp.299-329.Google Scholar

  • Hurle D.T.J. and Jakemann E.J. (1971): Soret-driven thermo solutal convection. - Fluid Mech., vol.47, pp.667-687.Google Scholar

  • Kim M.C. (2011): Linear stability analysis on the onset of Soret driven motion in nanoparticles suspension. - The European Physical Journal, vol.34, pp.27.Google Scholar

  • Kushal S., Paras R. and Kushal S. (2011b): Revolving ferrofluid flow under the influence of magnetic field dependent viscosity and porosity with rotating disk on. - J. Electro Magn. Analysis and Applications (Scientific Research), vol.3(9), pp.378-386.Google Scholar

  • Kushal S., Paras R., Anupam B. and Kushal S. (2010): Effect of magnetic field dependent viscosity on revolving ferrofluid. - J. Magn. Magn. Mater., vol.322, No.21, pp.3476-3480.Web of ScienceGoogle Scholar

  • Kushal S., Paras R., Kushal S. and Anupam B. (2011a): Effect of porosity on revolving ferrofluid with rotating disk - Int. J. Fluids Engng., vol.3, No.3, pp.261-271.Google Scholar

  • Lalas D.P. and Carmi S. (1971): Thermo convective stability of ferrofluids. - Phys Fluids, vol.14, No.2, pp.436-437.Google Scholar

  • Lange A. (2004): Thermomagnetic convection of magnetic fluids in a cylindrical geometry. - Phys. Rev., E.70, pp.046308.Google Scholar

  • Ramanathan and Muchikel N. (2006): Effect of temperature-dependent viscosity on ferroconvection in a porous medium. - Int. J. of Appl. Mech. and Engng., vol.11, No.1, pp.93-104.Google Scholar

  • Rosensweig R.E. (1985): Ferrohydrodynamics. - Cambridge: Cambridge University Press.Google Scholar

  • Schechter R.S and Velarde M. (1974): The component Benard problem - Adv. in Phys., vol.26, pp.265-301.Google Scholar

  • Schwab L., Hilderbrandt U. and Stierstadt K. (1983): Magnetic Benard convection. - J. Magn. Magn. Mater., vol.39, pp.113-114.CrossrefGoogle Scholar

  • Sekar R., Vaidyanathan G. and Hemalatha R. (2008): Soret-driven thermohaline convection in dusty ferrofluids saturating a porous medium. - Int. J. of Appl., Mech. and Engng., vol.13, No.4, pp.1003-1018.Google Scholar

  • Sekar R., Vaidyanathan G. and Hemalatha R. (2009): Effect of presence of dust particles on Soret-driven ferrothermohaline convection. - Int. J. of. Appl. Mech. and Engng., vol.14, No.2, pp.509-522.Google Scholar

  • Sekar R., Vaidyanathan G. and Ramanathan A. (1998): Effect of rotation on ferrothermohaline convection saturating a porous medium. - Int. J. Eng. Sci., vol.5, pp.445-452.Google Scholar

  • Sekar R., Vaidyanathan G. and Ramanathan A. (2000): Effect of rotation on ferrothermohaline convection. - J. Magn.Google Scholar

  • Magn. Mater., vol.218, pp.266-272.Google Scholar

  • Sekar R., Vaidyanathan G., Hemalatha R. and Sendhilnathan S. (2006): Effect of sparse distribution pores in a Soret driven ferrothermohaline convection. - J. Magn. Magn. Mater., vol.302, pp.20-28.Google Scholar

  • Sekar R., Vaidyanathan G., Hemalatha R. and Sendhilnathan S. (2007): Effect of Coriolis force on Soret driven thermohaline convective system. - Int. J. Mathematical Sci., vol.6, No.3-4, pp.666-673.Google Scholar

  • Sekar R., Vaidyanathan G. and Ramanathan A. (1993): The ferroconvection in fluids saturating a rotating densely packed porous medium. - Int. J. Eng. Sci., vol.31, No.2, pp.241.CrossrefGoogle Scholar

  • Shevtsova M., Melnikov D.E. and Clegros J. (2006): Onset of convection in Soret driven instability. - Phys. Rev., E.73, p.047302.Google Scholar

  • Shliomis M.I. and Souhar M. (2000): Self-oscillatory convection caused by Soret-effect. - Europhys Lett., vol.49, No.1, pp.55.Google Scholar

  • Sunil A. and Sharma R.C. (2005a): Effect of magnetic field dependent viscosity on thermosolutal convection in ferromagnetic fluid. - App. Math. Comp., vol.163, No.3, pp.1197-1214.Google Scholar

  • Sunil A., Poonam S. and Amit M. (2011): A non linear stability analysis of a rotating double diffusive magnetized ferrofluid. - Appl. Maths. Computation., vol.218, No.6, pp.2785-2799.Google Scholar

  • Sunil D. and Sharma R.C. (2005b): Effect of magnetic field dependent viscosity on thermosolutal convection in ferromagnetic fluid saturating a porous medium. - Trans. Porous Media, vol.60, No.3, pp.251-274.Google Scholar

  • Turner J.S. (1974): Double diffusive phenomena. - Ann. Rev Fluid Mech., vol.6, pp.37.CrossrefGoogle Scholar

  • Vaidyanathan G and Sekar R (2002b): Effect of magnetic field dependent viscosity on ferroconvection in rotating medium. - Ind. J. Pure. Appl. Phys., vol.40, pp.159-165.Google Scholar

  • Vaidyanathan G., Sekar R., Vasanthakumari R. and Ramanathan A. (2002c): Effect of magnetic field dependent viscosity on ferroconvection in a rotating sparsely distributed porous medium. - J. Magn. Magn. Mater., vol.250, pp.65-76. Vaidyanathan G., Sekar R. and Ramanathan A. (1995): Ferrothermohaline convection in a porous medium. - J. Magn.Google Scholar

  • Magn. Mater., vol.176, pp.321-330.Google Scholar

  • Vaidyanathan G., Sekar R. and Ramanathan A. (1997): Ferrothermohaline convection.- J. Magn. Magn. Mater., vol.176, pp.321-330.Google Scholar

  • Vaidyanathan G., Sekar R., Hemalatha R., Vasanthakumari R. and Sendhilnathan S. (2005): Soret driven ferrothermohaline convection. - J. Magn. Magn. Mater., vol.288.Google Scholar

  • Vaidyanathan G., Ramanathan A. and Maruthamanikandan S. (2002a): Effect of magnetic field dependent viscosity on ferroconvection in sparsely distributed porous medium. - Ind. J. Pure. Appl. Phys., vol.40, pp.166-171.Google Scholar

  • Voelker T. and Odenbach S. (2005): Thermo diffusion in ferrofluids in the presence of a magnetic field. - Phys Fluids., vol.17, pp.037104. CrossrefGoogle Scholar

About the article

Published Online: 2014-03-07

Published in Print: 2014-02-01


Citation Information: International Journal of Applied Mechanics and Engineering, Volume 19, Issue 1, Pages 61–77, ISSN (Print) 1734-4492, DOI: https://doi.org/10.2478/ijame-2014-0006.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in