Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Applied Mechanics and Engineering

The Journal of University of Zielona Góra

Editor-in-Chief: Walicki, Edward

4 Issues per year

CiteScore 2016: 0.12

SCImago Journal Rank (SJR) 2016: 0.127
Source Normalized Impact per Paper (SNIP) 2016: 0.063

Open Access
See all formats and pricing
More options …

An overview of Millionschikov's quasi-normality hypothesis applied to turbulence

C. Mamaloukas / H.P. Mazumdar
Published Online: 2014-03-07 | DOI: https://doi.org/10.2478/ijame-2014-0009


In this paper, we examine the zero-fourth cumulant approximation that was applied to fluctuating velocity components of homogeneous and isotropic turbulence by M.D. Millionschikov. Since the publication of the remarkable paper of Millionschikov, many authors have applied this hypothesis to solve the closure problem of turbulence. We discuss here various studies by the other authors on the developments of this hypothesis and their applications to the incompressible velocity temperature, hydrodynamic and magnetohydrodynamic fluctuating pressure fields and the general magnetohydrodynamic turbulence field. Lastly, we discuss broadly the computational difficulties that arise in turbulence problems and their possible refinements. We include also some enlightments of the process of future work that could be undertaken in this field of research

Keywords: Millionschikov's quasi-normality hypothesis; homogeneous turbulence; isotropic turbulence; correlation tensors; zero-fourth cumulant approximation


  • Antonia R.A., Chambers A.J. and Bradley E.F. (1982): Third- and fourth-order mixed moments of turbulent velocity and temperature fluctuations in the atmospheric surface layer. - Boundary Layer Meteorology. - vol.22, pp.421-430.Google Scholar

  • Batchelor G.K. and Proudman I. (1956): The large-scale structure of homogeneous turbulence. - Phil. Trans. Roy. Soc., vol.248A, p.167.Google Scholar

  • Canuto V.M. (1992): Turbulent convection with overshooting: Reynolds stress approach. - Astrophys. J., vol.392, pp.218-232.Google Scholar

  • Chow W.L. (1940): Über Systeme von linearen partiellen differentialgleichungen erster ordnung. - J. Math. Ann., pp.98-105.Google Scholar

  • Ghosh K.M. (1972): Some concequences of Millionschikov’s hypothesis in the early-period decay process of turbulence. - Indian Journal of Pure and Appl. Math., vol.3, No.1, p.157.Google Scholar

  • Gryanik V.M., Hartmann J, Raasch S. and Schröter M. (2005): A Refinement of the Millionshchikov quasi-normality hypothesis for convective boundary layer turbulence. - J. Atmos. Sci., vol.62, pp.2632-2638.CrossrefGoogle Scholar

  • Heisenberg (1948): On the theory of statistical and isotropic turbulence. - Proceedings of the Royal Society of London.Google Scholar

  • Series A, Mathematical and Physical Sciences vol.195, No.1042, pp.402-406.Google Scholar

  • Losch M. (2004): On the validity of the Millionshchikov quasi-normality hypothesis for open-ocean deep convection. - Geophysical Research Letters, vol.31, L23301, No.4 pp., Doi:10.1029/2004GL021412.CrossrefGoogle Scholar

  • Mazumdar H.P. (1976): On the decay process of turbulence at large Reynolds and Peclet numbers. - App. Sci. Res., vol.32, p.571.CrossrefGoogle Scholar

  • Mazumdar H.P. (1979): On the pressure fluctuations associated with a general type of turbulence. - Appl. Sci. Res. vol.35, No.5-6, pp.367-371.CrossrefGoogle Scholar

  • Mazumdar H.P. (1984): On the fluctuations of total pressure associated with general type of hydromagnetic turbulence. - Archeves of Mechanics, vol.36, pp.233-240.Google Scholar

  • Mazumdar H.P. (2010): On Incompressible Hydromagnetic Turbulence. (Research Monograph). - Calcutta Mathematical Society.Google Scholar

  • Mazumdar H.P. and Mandal B.C. (2009): On persen theory of two dimensional turbulent boundary layer. - Int. J. of Appl. Mech. and Engineering, vol.14, No.4, pp.1009-1028.Google Scholar

  • Millionschikov M. (1941): On the theory of homogeneous isotropic turbulence. - Dokl. Akad. Nauk SSSR, vol.32, pp.615-618.Google Scholar

  • Mirabel A.P. (1969): Application of Millionschikov’s hypothesis to the problem of isotropic turbulence degeneration. - Izv. AN SSSR. Mekhanika Zhidkosti i Gaza, vol.4, No.5, pp.171-175.Google Scholar

  • Monin A.S. and Yaglom A.M. (1975): Statistical Fluid Mechanics. - Vol. II, MIT Press, Cambridge, MA.Google Scholar

  • Ogura Y. (1963): A consequence of the zero-fourth-cumulant approximation in the decay of isotropic turbulence. - Journal of Fluid Mechanics, vol.16, pp.33-40.CrossrefGoogle Scholar

  • Panchev S. (1971): Random functions and turbulence. - Oxford: Pergamon Press., p.444.Google Scholar

  • Proudman I. and Reid W.H. (1954): On the decay of a normally distributed and homogeneous turbulent velocity field. - Phil. Trans. Roy. Soc. vol.247A, p.163-189.Google Scholar

  • Uberoi M.S. (1953): Quadruple velocity correlations and pressure fluctuations in isotropic turbulence. - J. Aeronaut. Sci., vol.20, p.197. CrossrefGoogle Scholar

About the article

Published Online: 2014-03-07

Published in Print: 2014-02-01

Citation Information: International Journal of Applied Mechanics and Engineering, Volume 19, Issue 1, Pages 123–132, ISSN (Print) 1734-4492, DOI: https://doi.org/10.2478/ijame-2014-0009.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in