Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Applied Mechanics and Engineering

The Journal of University of Zielona Góra

Editor-in-Chief: Walicki, Edward

4 Issues per year

CiteScore 2016: 0.12

SCImago Journal Rank (SJR) 2016: 0.127
Source Normalized Impact per Paper (SNIP) 2016: 0.063

Open Access
See all formats and pricing
More options …

Study of the effect of composite constrained layers in vibration damping of plates

K.S.K. Sasikumar / S. Selvakumar / K.P. Arulshri
Published Online: 2014-03-07 | DOI: https://doi.org/10.2478/ijame-2014-0015


To add damping to the system, viscoelastic materials (VEM) are added to structures, in order to enhance damping effects of the VEM, a constraining layer is attached. Due to the addition of the material on the system the fundamental characteristics of the systems are altered much. This paper analyzes the damping effect of the constraining layer on plate type structures numerically using the FEM software ANSYS. Experiments are conducted to validate the analytical results. The use of weightless composite materials as constraining layers has been analyzed. Results are compared with the conventional constraining layer materials. The results showed that composite materials give a better damping effect without much altering the fundamental characteristics

Keywords: vibration; composite; viscoelastic; plates


  • Douglas B.E. and Yang J.C. (1978): Transverse compressional damping in the vibration response of elastic viscoelastic beams. - AIAA Journal, vol.16, No.9, pp.925-930.Google Scholar

  • Fasana A. and Marchesiello S. (2001): Rayleigh-Ritz analysis of sandwich beams. - J. Sound Vib., vol.241, No.4, pp.643-652.Google Scholar

  • Hao M. and Rao M.D. (2005): Vibration and damping analysis of a sandwich beam containing a viscoelastic constraining layer. - Journal of Composite Materials, vol.39, No.18, pp.1621-1643.Google Scholar

  • Kerwin E.M. (1959): Damping of flexural waves by a constrained viscoelastic layer. - Journal of Acoustic Society of America, vol.31, No., pp.952-962.Google Scholar

  • Lam M.J. (1997): Hybrid active/passive models with frequency dependent damping. - Ph.D Dissertation. Virginia Polytechnic Institute and State University.Google Scholar

  • Mantena P.R., Gibson R.F. and Hwang S.J. (1991): Optimal constrained viscoelastic tape lengths for maximizing damping in laminated composites. - AIAA J., No.29, pp.1678-1685.Google Scholar

  • Marcelin J.L., Ph. Trompette and Smati A. (1992): Optimal constrained layer damping with partial coverage. - Finite Elements Anal. Des., vol.12, No. pp.273-280.Google Scholar

  • Mead D.J. and Markus S. (1969): The forced vibration of a three-layer, damped sandwich beam with arbitrary boundary conditions. - AIAA Journal, vol.10, No.2, pp.163-175.Google Scholar

  • Nakra B.C. (1998): Vibration control in machines and structures using viscoelastic damping. - Journal of Sound and Vibration, vol.211, No.3, pp.449-465.Google Scholar

  • Ross D., Ungar E.E. and Kerwin E.M. (1959): Flexural vibrations by means of viscoelastic laminate. - ASME Structure Damping Section, pp.48-87.Google Scholar

  • Sasikumar K.S.K., Selvakumar S. and Arulshri K.P. (2011): An analysis of the effect of constraining layer modulus on the vibration control of beams treated with PCLD. - European Journal of Scientific Research, vol.66, No.3, pp.377-391.Google Scholar

  • Yan M.J. and Dowell E.H. (1972): Governing equations for vibrating constrained layer damping of sandwich beams and plates. - J. Appl. Mech. Trans. ASME, vol.94, No., pp.1041-1047. Google Scholar

About the article

Published Online: 2014-03-07

Published in Print: 2014-02-01

Citation Information: International Journal of Applied Mechanics and Engineering, Volume 19, Issue 1, Pages 203–209, ISSN (Print) 1734-4492, DOI: https://doi.org/10.2478/ijame-2014-0015.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in