Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Applied Mechanics and Engineering

The Journal of University of Zielona Góra

Editor-in-Chief: Walicki, Edward

4 Issues per year

CiteScore 2016: 0.12

SCImago Journal Rank (SJR) 2016: 0.127
Source Normalized Impact per Paper (SNIP) 2016: 0.063

Open Access
See all formats and pricing
More options …

Mathematical Modeling of Magneto Pulsatile Blood Flow Through a Porous Medium with a Heat Source

B.K Sharma / M. Sharma
  • Department of Biotechnology, FASC Mody University of Science and Technology Lakshmangarh, Rajasthan, INDIA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ R.K. Gaur
  • Department of Biotechnology, FASC Mody University of Science and Technology Lakshmangarh, Rajasthan, INDIA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ A. Mishra
Published Online: 2015-05-23 | DOI: https://doi.org/10.1515/ijame-2015-0025


In the present study a mathematical model for the hydro-magnetic non-Newtonian blood flow in the non-Darcy porous medium with a heat source and Joule effect is proposed. A uniform magnetic field acts perpendicular to the porous surface. The governing non-linear partial differential equations have been solved numerically by applying the explicit finite difference Method (FDM). The effects of various parameters such as the Reynolds number, hydro-magnetic parameter, Forchheimer parameter, Darcian parameter, Prandtl number, Eckert number, heat source parameter, Schmidt number on the velocity, temperature and concentration have been examined with the help of graphs. The present study finds its applications in surgical operations, industrial material processing and various heat transfer operations.

Keywords : heat source; blood flow; porous medium and MHD


  • Baish J.W. (1990): Heat transport by countercurrent blood vessels in the presence of an arbitrary pressure gradient. - ASME J Biomech. Eng., 112:207.Google Scholar

  • Bhargava R., Rawat S., Takhar H.S. and Bég O.A. (2007): Pulsatile magneto-biofluid flow and mass transfer in a non- Darcian porous medium channel. - Meccanica, vol.42, pp.247-262.Web of ScienceGoogle Scholar

  • Chamkha Ali J. (2004): Unsteady MHD convective heat and mass transfer past a semi-infinite vertical permeable moving plate with heat absorption. - Int. J. Engg. Sci., vol.42, pp.217-230.Google Scholar

  • Cokelet G.R. (1972): The rheology of human blood. In: Fung YC (ed) Biomechanics-its foundations and objectives. - New York: Prentice Hall.Google Scholar

  • Consiglieri L., Santos I. and Haemmerich D (2003): Theoretical analysis of the heat convection coefficient in large vessels and the significance for thermal ablative therapies. - Phys. Med. Biol., vol.48, pp.4125-4134.CrossrefGoogle Scholar

  • Davalos R.V., Rubinsky B. and Mir L.M. (2003): Theoretical analysis of the thermal effects during in vivo tissue electroporation. - Bioelectrochem J., vol.61, pp.99-107.Google Scholar

  • Dybbs A. and Edwards R.V. (1984): A new look at porous media fluid mechanics: Darcy to Turbulent. In: Bear J., Corapcioglu M.Y. (eds) Fundamentals of Transport Phenomena in Porous Media NATO ASI series E: Applied Sciences, vol.82, pp.199-256.Google Scholar

  • Hoffman J.D. (1992): Numerical Methods for Engineers and Scientists. - New York: McGraw-Hill.Google Scholar

  • Kandasamy R., Periasamy K. and Prashu Sivagnana K.K. (2005): Effects of chemical reaction, heat and mass transfer along wedge with heat source and concentration in the presence of suction or injection. - Int. J. Heat Mass Transfer, vol.48, pp.1388-1394.CrossrefGoogle Scholar

  • Khaled A.R.A. and Vafai K. (2003): The role of porous media in modeling flow and heat transfer in biological tissues. - Int. J. Heat and Mass Transfer, vol.46, pp.4989-5003.Google Scholar

  • Louckopoulos V.C. and Tzirtzilakis E.E. (2004): Biomagnetic channel flow in spatially varying magnetic field. - Int. J. Eng. Sci., vol.42, pp.571-590.Google Scholar

  • McLellan K., Petrofsky J.S., Bains G., Zimmerman G., Prowse M. and Lee S. (2009): The effects of skin moisture and subcutaneous fat thickness on the ability of the skin to dissipate heat in young and old subjects, with and without diabetes, at three environmental room temperatures. - Med. Eng. Phys., vol.31, No.2, pp.165-172. doi:10.1016/ j.medengphy.2008.08.004Web of ScienceCrossrefGoogle Scholar

  • Ogulu A. and Amos E. (2007): Modeling pulsatile blood flow within a homogeneous porous bed in the presence of a uniform magnetic field and time-dependent suction. - Int. Comm. Heat Mass Transfer, vol.34, pp.989-995.Web of ScienceCrossrefGoogle Scholar

  • Pennes H.H. (1948): Analysis of tissue and arterial blood temperatures in the resting human forearm. - J. Appl. Physiol., vol.1, No.22, pp.93-122.Google Scholar

  • Petrofsky J.S., Bains G., Raju C., Lohman E., Berk L., Prowse M., Gunda S., Madani P. and Batt J. (2009): The effect of the moisture content of a local heat source on the blood flow response of the skin. - Archives of Dermatological Research, vol.301, No.8, pp.581-585.Web of ScienceGoogle Scholar

  • Pop I. and Ingham D.B. (2001): Convective Heat Transfer: Mathematical and Numerical Modelling of Viscous Fluids and Porous Media, Pergamon, Oxford.Google Scholar

  • Preziosi L. and Farina A. (2002): On Darcy’s law for growing porous media. - Int. J. Non-Linear Mech., vol.37, pp.485-491.Google Scholar

  • Rawat S., Bhargava R., Anwar Bég O., Bhargava P. and Hughes Ben R. (2009): Pulsatile dissipative magneto-biorheological fluid flow and heat transfer in a non-Darcy porous medium channel: finite element modeling. - Emirates Journal for Engineering Research, vol.14, No.2, pp.77-90.Google Scholar

  • Sharma B.K., Agarwal M. and Chaudhary R.C. (2007): MHD fluctuating free convective flow with radiation embedded in porous medium having variable permeability and heat source/sink. - Journal of Technical Physics, vol.47, No.1, pp.47-58.Google Scholar

  • Sharma B.K., Agarwal M. and Chaudhary R.C. (2007): Effects of injection/suction on three-dimensional Couette flow with heat source/sink. - Ind. J. of Theoretical Physics, vol.55, No.1, pp.27-37.Google Scholar

  • Sharma B.K., Chaudhary R.C. and Agarwal M. (2008): Radiation effect on steady free convective flow along a uniform moving porous vertical plate in presence of heat source/sink and transverse magnetic field. - Bull. Cal. Math. Soc., vol.100, pp.529-538.Google Scholar

  • Sharma B.K., Gupta S., Krishna V.V. and Bhargavi R.J. (2014): Soret and Dufour effects on an unsteady MHD mixed convective flow past an infinite vertical plate with Ohmic dissipation and heat source. - Afrika Matematika, vol.25, pp.799-821, DOI 10.1007/s13370-013-0154-6. CrossrefGoogle Scholar

  • Sharma B.K., Jha A.K. and Chaudhary R.C. (2007): Hall effect on MHD free convective flow of a viscous fluid past an infinite vertical porous plate with Heat source/sink effect. - Romania Journal of Physics, vol.52, No.5-6, pp.487-504.Google Scholar

  • Sharma B.K., Mishra A. and Gupta S. (2013): Heat and mass transfer in magneto-biofluid flow through a non-Darcian porous medium with Joule effect. - J. Eng. Phys. and Thermo Phys., vol.86, No.4, pp.716-725.Google Scholar

  • Sharma B.K., Sharma P.K. and Chand T. (2011): Effect of radiation on temperature distribution in three-dimensional Couette flow with heat source/sink. - International Journal of Applied Mechanics and Engineering, vol.16, No.2, pp.531-542.Google Scholar

  • Shrivastava D., McKay B. and Romer R.B. (2005): An analytical study of heat transfer in finite tissue with two blood vessels and uniform Dirichlet boundary conditions. - ASME J. Heat Transfer, vol.127, No.2, 179-188.Google Scholar

  • Skalak R. and Chien S. (1982): Rheology of blood cells as soft tissues. - Biorheology, vol.19, pp.453-461.Google Scholar

  • Sorek S. and Sideman S. (1986): A porous medium approach for modelling heart mechanics, B l-D case. - Math. Biosci., vol.81, pp.14-32.Google Scholar

  • Takeuchi T., Mizuno T., Higashi T., Yamagishi A. and Date M. (1995): Orientation of red blood cells in high magnetic field. - J. Magn. Magn. Mater., vol.140, pp.1462-1463.Google Scholar

  • Tzirtzilakis E.E. and Tanoudis G.B. (2003): Numerical study of biomagnetic fluid flow over a stretching sheet with heat transfer. - Int. J. Numer. Methods Heat Fluid Flow, vol.13, No.7, pp.830-848.Google Scholar

  • Vankan W.J., Huyghe J.M., Janssen J.D., Huson A., Hacking W.J.G. and Schrenner W. (1997): Finite element analysis of blood flow through biological tissue. - Int. J. Eng. Sci., vol.35, pp.375-385. CrossrefGoogle Scholar

About the article

Received: 2013-12-21

Revised: 2015-01-15

Published Online: 2015-05-23

Published in Print: 2015-05-01

Citation Information: International Journal of Applied Mechanics and Engineering, Volume 20, Issue 2, Pages 385–396, ISSN (Online) 1734-4492, DOI: https://doi.org/10.1515/ijame-2015-0025.

Export Citation

© 2015. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in