Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Applied Mechanics and Engineering

The Journal of University of Zielona Góra

Editor-in-Chief: Walicki, Edward

4 Issues per year


CiteScore 2016: 0.12

SCImago Journal Rank (SJR) 2016: 0.127
Source Normalized Impact per Paper (SNIP) 2016: 0.063

Open Access
Online
ISSN
2353-9003
See all formats and pricing
More options …

Pressure Distribution in a Squeeze Film Spherical Bearing with Rough Surfaces Lubricated by an Ellis Fluid

P. Jurczak
  • Corresponding author
  • University of Zielona Góra, Faculty of Mechanical Engineering, ul. Szafrana 2, P.O.Box 47, 65-516 Zielona Góra, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ J. Falicki
  • University of Zielona Góra, Faculty of Mechanical Engineering, ul. Szafrana 2, P.O.Box 47, 65-516 Zielona Góra, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-09-10 | DOI: https://doi.org/10.1515/ijame-2016-0036

Abstract

In this paper, the solution to a problem of pressure distribution in a curvilinear squeeze film spherical bearing is considered. The equations of motion of an Ellis pseudo-plastic fluid are presented. Using Christensen’s stochastic model of rough surfaces, different forms of Reynolds equation for various types of surface roughness pattern are obtained. The analytical solutions of these equations for the cases of externally pressurized bearing and squeeze film bearing are presented. Analytical solutions for the film pressure are found for the longitudinal and circumferential roughness patterns. As a result the formulae expressing pressure distribution in the clearance of bearing lubricated by an Ellis fluid was obtained. The numerical considerations for a spherical bearing are given in detail.

Keywords: pseudo-plastic model of Ellis fluid; thrust curvilinear bearings; modified Reynolds equation

References

  • [1]

    Covey G.H. and Stanmore B.R. (1981): Use of the parallel-plate plastometer for the characterisation of viscous fluids with a yield stress. – J. Non-Newton. Fluid Mech. vol.8, pp.249–260.Google Scholar

  • [2]

    Dai G. and Bird R.B. (1981): Radial flow of Bingham fluid between two fixed circular disks. – J. Non-Newton. Fluid Mech. vol.8, pp.349–355.Google Scholar

  • [3]

    Lipscomb C.C. and Denn M.M. (1984): Flow of Bingham fluids in complex geometries. – J. Non-Newt. Fluid Mech., vol.14, No.3, pp.337-349.Google Scholar

  • [4]

    Walicki E. and Walicka A. (1998): Mathematical modelling of some biological bearings. – Smart Materials and Structures, Proc. 4th European and 2nd MiMR Conference, Harrogate, UK, 6-8 July 1998, pp.519-525.Google Scholar

  • [5]

    Dorier C. and Tichy J. (1992): Behaviour of a Bingham-like viscous fluid in lubrication flows. – J. Non-Newt. Fluid Mech., vol.45, No.3, pp.291-350.Google Scholar

  • [6]

    Wada S. and Hayashi H. (1971): Hydrodynamic lubrication of journal bearings by pseudo-plastic lubricants, (Pt 1, Theoretical studies). – Bull. JSME, vol.14, No.69, pp.268-278.Google Scholar

  • [7]

    Wada S. and Hayashi H. (1971): Hydrodynamic lubrication of journal bearings by pseudo-plastic lubricants. (Pt 2, Experimental studies). – Bull. JSME, vol.14, No.69, pp.279-286.Google Scholar

  • [8]

    Swamy S.T.N., Prabhu B.S. and Rao B.V.A. (1975): Stiffness and damping characteristics of finite width journal bearing with a non-Newtonian film and their application to instability prediction. – Wear, vol.32, pp.379-390.Google Scholar

  • [9]

    Rajalingham C., Rao B.V.A. and Prabu S. (1978): The effect of a non-Newtonian lubricant on piston ring lubrication. – Wear, vol.50, pp.47-57.Google Scholar

  • [10]

    Walicka A. (2002): Rotational Flows of Rheologically Complex Fluids in Thin Channels (in Russian). – Zielona Gora: University Press.Google Scholar

  • [11]

    Walicki E. (2005): Rheodynamics of Slide Bearings Lubrication (in Polish). – Zielona Gora: University Press.Google Scholar

  • [12]

    Walicka A. (1994): Micropolar Flow in a Slot Between Rotating Surfaces of Revolution. – Zielona Góra: TU Press.Google Scholar

  • [13]

    Walicki E. and Walicka A. (1998): Mathematical modelling of some biological bearings. – Smart Materials and Structures, Proc. 4th European and 2nd MiMR Conference, Harrogate, UK, 6-8 July 1998, pp.519-525.Google Scholar

  • [14]

    Khonsari M.M. and Dai F. (1992): On the mixture flow problem in lubrication of hydrodynamic bearing: small solid volume fraction. – STLE Trib. Trans., vol.35, No.1, pp.45-52.Google Scholar

  • [15]

    Agrawal V.K. (1970): Effect of lubricant inertia on squeeze film in spherical bearing. – Jap. J. Appl. Phys., vol.9, No.7, pp.831-833.Google Scholar

  • [16]

    Gould F. (1975): High-pressure spherical squeeze films. – J. Lubric. Technol. Trans. ASME, ser. F, vol.97, No.1, pp.207-208.Google Scholar

  • [17]

    Murti P.R.K. (1975): Squeeze film in curved circular plates. – J. Lubric. Technol. Trans. AME, ser F, vol.97, No.4, pp.650-654.Google Scholar

  • [18]

    Vora K.H. (1980): Behaviour of squeeze film between curved circular plates with a concentric circular pocket. – Wear, vol.65, pp.35-38.Google Scholar

  • [19]

    Walicka A. (1989): Accurate and Asymptotic Solution of Simplified Sets of Equations Describing the Motion of Viscous Fluids in a Slot Bounded by Two Co-axial Surfaces of Revolution (in Polish). – Warszawa: PWN.Google Scholar

  • [20]

    Christensen H. (1970): Stochastic model for hydrodynamic lubrication of rough surfaces. – Proc. Inst. Mech. Engrs, vol.184, pt 1, pp.1013-1022.Google Scholar

  • [21]

    Bujurke N.M., Kudenatti R.B. and Awati V.B. (2007): Effect of surface roughness on squeeze film poroelastic bearings with special reference to synovial joints. – Mathematical Biosciences, vol.209, pp.76-89.Google Scholar

  • [22]

    Lin J.-R. (2000): Surfaces roughness effect on the dynamic stiffness and damping characteristics of compensated hydrostatic thrust bearings. – Int. J. Machine Tools Manufact., vol.40, pp.1671-1689,.Google Scholar

  • [23]

    Lin J.-R. (2001): The effect of couple stresses in the squeeze film behavior between isotropic rough rectangular plates. – Int. J. Appl. Mech. Eng., vol.6, No.4, pp.1007-1024.Google Scholar

  • [24]

    Prakash J. and Tiwari K. (1984): An analysis of the squeeze film between rough porous rectangular plates with arbitrary porous wall thickness. – Journal of Tribology, Trans. ASME, vol.106, No.2, pp.218-222.Google Scholar

  • [25]

    Prakash J. and Tiwari K. (1985): Effects of surface roughness on the squeeze film between rectangular porous annular disc with arbitrary porous wall thickness. – Int. J. Mech. Sci., vol.27, No.3, pp.135-144.Google Scholar

  • [26]

    Walicka A. (2009): Surface roughness effects in a curvilinear squeeze film bearing lubricated by a power-law fluid. – Int. J. Appl. Mech. Engng, vol.14, No.1, pp.277-293.Google Scholar

  • [27]

    Walicka A. (2012): Porous curvilinear squeeze film bearing with rough surfaces lubricated by a power-law fluid. – Journal of Porous Media, vol.15, No.1, pp.29-49.Google Scholar

  • [28]

    Walicka A. and Walicki E. (2002): Surface roughness effect on the pressure distribution in curvilinear thrust bearings. – Exploitation Problems of Machines, vol.131, No.3, pp.157-167.Google Scholar

  • [29]

    Walicka A. and Walicki E. (2002): Couple stress and surface roughness effects in curvilinear thrust bearings. – Int. J. Appl. Mech. Engng, vol.7, Spec. Issue: SITC, pp.109-117.Google Scholar

  • [30]

    Gururajan K. and Prakash J. (1999): Surface roughness effects in infinitely long porous journal bearing. – Journal of Tribology, Trans. ASME, vol.121, No.1, pp.139-147.Google Scholar

  • [31]

    Ellis S.B. (1927): Thesis, Lafayette College, Pa. Citted in: Matsuhisa S., Bird R.B. (1965): Analytical and numerical solutions for laminar flow of the Non-Newtonian Elis fluid. – AiChE Journal, pp.588-595.Google Scholar

  • [32]

    Rotem Z. and Shinnar R. (1961): Non-Newtonian flow between parallel boundaries in linear movements. – Chem. Eng. Sie., vol.15, pp.130-143.Google Scholar

  • [33]

    Walicka A. (2002a): Rheodynamics of Non-Newtonian Fluids Flow in Straight and Curved Channels (in Polish), – Zielona Gora: University Press.Google Scholar

  • [34]

    Walicki E. (1977): Viscous Fluid Flow in Slots of Thrust Bearings. – Bydgoszcz: AT-R. Press.Google Scholar

  • [35]

    Christensen H. and Tønder K. (1971): The hydrodynamic lubrication of rough bearing surfaces of finite width. – ASME, J. Lubric. Technol., vol.93, No.2, pp.324-330.Google Scholar

  • [36]

    Christensen H. and Tønder K. (1973): The hydrodynamic lubrication of rough journal bearings. – ASME, J. Lubric. Technol., vol.95, No.1, pp.166-172.Google Scholar

  • [37]

    Whorlow R.W. (1992): Rheological Techniques (Sec. Edition). – Ellis Horwood, New York.Google Scholar

  • [38]

    Walicka, A., Walicki, E. and Ratajczak, M. (1999): Pressure distribution in a curvilinear thrust bearing with pseudo-plastic lubricant. – Appl. Mech. Enging. 4 (sp. Issue), pp.81-88.Google Scholar

  • [39]

    Walicka, A., Walicki, E. and Ratajczak, M. (2000): Rotational inertia effects in a pseudo-plastic fluid flow between non-coaxial surfaces of revolution. – Proc. 4th Minsk Int. Heat Mass Transfer Forum (May 22-27, 2000 Minsk Belarus), pp.19-29.Google Scholar

About the article

Received: 2016-06-12

Revised: 2016-07-02

Published Online: 2016-09-10

Published in Print: 2016-08-01


Citation Information: International Journal of Applied Mechanics and Engineering, ISSN (Online) 2353-9003, ISSN (Print) 1734-4492, DOI: https://doi.org/10.1515/ijame-2016-0036.

Export Citation

© 2016 P. Jurczak et al., published by De Gruyter Open. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in