Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Adolescent Medicine and Health

Editor-in-Chief: Merrick, Joav

Editorial Board: Birch, Diana ML / Blum, Robert W. / Greydanus, MD, Dr. HC (Athens), Donald E. / Hardoff, Daniel / Kerr, Mike / Levy, Howard B / Morad, Mohammed / Omar, Hatim A. / de Paul, Joaquin / Rydelius, Per-Anders / Shek, Daniel T.L. / Sher, Leo / Silber, Tomas J. / Towns, Susan / Urkin, Jacob / Verhofstadt-Deneve, Leni / Zeltzer, Lonnie / Tenenbaum, Ariel

CiteScore 2018: 0.79

SCImago Journal Rank (SJR) 2018: 0.350
Source Normalized Impact per Paper (SNIP) 2018: 0.476

See all formats and pricing
More options …
Volume 29, Issue 2


Postnatal testosterone may be an important mediator of the association between prematurity and male neurodevelopmental disorders: a hypothesis

Timothy R. Rice
  • Corresponding author
  • Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, Box 1230, New York, NY 10029, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-09-10 | DOI: https://doi.org/10.1515/ijamh-2015-0047


Children born premature are at risk for neurodevelopmental disorders, including autism and schizophrenia. This piece advances the hypothesis that altered androgen exposure observed in premature infants is an important mediator of the neurodevelopmental risk in males associated with prematurity. Specifically, the alterations of normative physiologic postnatal activations of the hypothalamic-pituitary-gonadal axis that occur in preterm males are hypothesized to contribute to the risk of neuropsychiatric pathology of prematurity through altered androgen-mediated organizational effects on the developing brain. The physiology of testosterone and male central nervous system development in full-term births is reviewed and compared to the developmental processes of prematurity. The effects of the altered testosterone physiology observed within prematurity outside of the central nervous system are reviewed as a segue into a discussion of the effects within the nervous system, with a special focus on autism spectrum disorders and attention deficit hyperactivity disorder. The explanatory power of this model is reviewed as a supplement to the preexisting models of prematurity and neurodevelopmental risk, including infection and other perinatal central nervous system insults. The emphasis is placed on altered androgen exposure as serving as just one among many mediators of neurodevelopmental risk that may be of interest for further research and evidence-based investigation. Implications for diagnosis, management and preventative treatments conclude the piece.

Keywords: attention deficit hyperactivity disorder; developmental disorders; men’s mental health; prematurity; testosterone


  • 1.

    Kugelman A, Colin AA. Late preterm infants: near term but still in a critical developmental time period. Pediatrics 2013;132:741–51.CrossrefGoogle Scholar

  • 2.

    Adams-Chapman I. Neurodevelopmental outcome of the late preterm infant. Clin Perinatol 2006;33:947–64.CrossrefPubMedGoogle Scholar

  • 3.

    Johnson S, Marlow N. Preterm birth and childhood psychiatric disorders. Pediatr Res 2011;69(5 Pt 2):11R–8R.Google Scholar

  • 4.

    Buchmayer S, Johansson S, Johansson A, Hultman CM, Sparén P, et al. Can association between preterm birth and autism be explained by maternal or neonatal morbidity? Pediatrics 2009;124:e817–25.CrossrefPubMedGoogle Scholar

  • 5.

    Nosarti C, Reichenberg A, Murray RM, Cnattingius S, Lambe MP, et al. Preterm birth and psychiatric disorders in young adult life. Arch Gen Psychiatry 2012;69:E1–8.PubMedGoogle Scholar

  • 6.

    Pringsheim T, Sandor P, Lang A, Shah P, O'Connor P. Prenatal and perinatal morbidity in children with Tourette syndrome and attention-deficit hyperactivity disorder. J Dev Behav Pediatr 2009;30:115–21.PubMedCrossrefGoogle Scholar

  • 7.

    Lindström K, Lindblad F, Hjern A. Preterm birth and attention-deficit/hyperactivity disorder in schoolchildren. Pediatrics 2011;127:858–65.PubMedCrossrefGoogle Scholar

  • 8.

    Grisham JR, Fullana MA, Mataix-Cols D, Moffitt TE, Caspi A, et al. Risk factors prospectively associated with adult obsessive-compulsive symptom dimensions and obsessive-compulsive disorder. Psychol Med 2011;41:2495–506.CrossrefPubMedGoogle Scholar

  • 9.

    Pasamanick B, Kawi A. A study of the association of prenatal and paranatal factors with the development of tics in children; a preliminary investigation. J Pediatr 1956;48:596–601.CrossrefPubMedGoogle Scholar

  • 10.

    Burd L, Severud R, Klug MG, Kerbeshian J. Prenatal and perinatal risk factors for Tourette disorder. J Perinat Med 1999;27:295–302.PubMedGoogle Scholar

  • 11.

    Klug MG, Burd L, Kerbeshian J, Benz B, Martsolf JT. A comparison of the effects of parental risk markers on pre- and perinatal variables in multiple patient cohorts with fetal alcohol syndrome, autism, Tourette syndrome, and sudden infant death syndrome: an enviromic analysis. Neurotoxicol Teratol 2003;25:707–17.PubMedCrossrefGoogle Scholar

  • 12.

    Motlagh MG, Katsovich L, Thompson N, Lin H, Kim Y-S, et al. Severe psychosocial stress and heavy cigarette smoking during pregnancy: an examination of the pre- and perinatal risk factors associated with ADHD and Tourette syndrome. Eur Child Adolesc Psychiatry 2010;19:755–64.CrossrefPubMedGoogle Scholar

  • 13.

    Mathews CA, Scharf JM, Miller LL, Macdonald-Wallis C, Lawlor DA, et al. Association between pre- and perinatal exposures and Tourette syndrome or chronic tic disorder in the ALSPAC cohort. Br J Psychiatry 2014;204:40–5.PubMedCrossrefGoogle Scholar

  • 14.

    Martel MM. Sexual selection and sex differences in the prevalence of childhood externalizing and adolescent internalizing disorders. Psychol Bull 2013;139:1221–59.PubMedCrossrefGoogle Scholar

  • 15.

    Baron-Cohen S. The extreme male brain theory of autism. Trends Cogn Sci 2002;6:248–54.PubMedCrossrefGoogle Scholar

  • 16.

    Svechnikov K, Landreh L, Weisser J, Izzo G, Colón E, et al. Origin, development and regulation of human Leydig cells. Horm Res Pædiatrics 2010;73:93–101.CrossrefGoogle Scholar

  • 17.

    Beck-Peccoz P, Padmanabhan V, Baggiani AM, Cortelazzi D, Buscaglia M, et al. Maturation of hypothalamic-pituitary-gonadal function in normal human fetuses: circulating levels of gonadotropins, their common alpha-subunit and free testosterone, and discrepancy between immunological and biological activities of circulating follicle-s. J Clin Endocrinol Metab 1991;73:525–32.CrossrefGoogle Scholar

  • 18.

    Codesal J, Regadera J, Nistal M, Regadera-Sejas J, Paniagua R. Involution of human fetal Leydig cells. An immunohistochemical, ultrastructural and quantitative study. J Anat 1990;172:103–14.PubMedGoogle Scholar

  • 19.

    Mann DR, Fraser HM. The neonatal period: a critical interval in male primate development. J Endocrinol 1996;149:191–7.CrossrefPubMedGoogle Scholar

  • 20.

    Forest MG, Cathiard AM, Bertrand JA. Evidence of testicular activity in early infancy. J Clin Endocrinol Metab 1973;37:148–51.PubMedCrossrefGoogle Scholar

  • 21.

    Forest MG, de Peretti E, Bertrand J. Testicular and adrenal androgens and their binding to plasma proteins in the perinatal period: developmental patterns of plasma testosterone, 4-androstenedione, dehydroepiandrosterone and its sulfate in premature and small for date infants as compared wit. J Steroid Biochem 1980;12:25–36.CrossrefGoogle Scholar

  • 22.

    Winter JS, Faiman C, Hobson WC, Prasad AV, Reyes FI. Pituitary-gonadal relations in infancy. I. Patterns of serum gonadotropin concentrations from birth to four years of age in man and chimpanzee. J Clin Endocrinol Metab 1975;40:545–51.CrossrefPubMedGoogle Scholar

  • 23.

    Winter JS, Hughes IA, Reyes FI, Faiman C. Pituitary-gonadal relations in infancy: 2. Patterns of serum gonadal steroid concentrations in man from birth to two years of age. J Clin Endocrinol Metab 1976;42:679–86.CrossrefPubMedGoogle Scholar

  • 24.

    Schmidt H, Schwarz HP. Serum concentrations of LH and FSH in the healthy newborn. Eur J Endocrinol 2000;143:213–5.PubMedGoogle Scholar

  • 25.

    Kuiri-Hänninen T, Seuri R, Tyrväinen E, Turpeinen U, Hämäläinen E, et al. Increased activity of the hypothalamic-pituitary-testicular axis in infancy results in increased androgen action in premature boys. J Clin Endocrinol Metab 2011;96:98–105.CrossrefPubMedGoogle Scholar

  • 26.

    Bolton NJ, Tapanainen J, Koivisto M, Vihko R. Circulating sex hormone-binding globulin and testosterone in newborns and infants. Clin Endocrinol (Oxf) 1989;31:201–7.CrossrefPubMedGoogle Scholar

  • 27.

    Huhtaniemi I, Dunkel L, Perheentupa J. Transient increase in postnatal testicular activity is not revealed by longitudinal measurements of salivary testosterone. Pediatr Res 1986;20:1324–7.CrossrefPubMedGoogle Scholar

  • 28.

    Knickmeyer RC, Woolson S, Hamer RM, Konneker T, Gilmore JH. 2D: 4D ratios in the first 2 years of life: Stability and relation to testosterone exposure and sensitivity. Horm Behav 2011;60:256–63.PubMedCrossrefGoogle Scholar

  • 29.

    Main KM, Schmidt IM, Skakkebaek NE. A possible role for reproductive hormones in newborn boys: progressive hypogonadism without the postnatal testosterone peak. J Clin Endocrinol Metab 2000;85:4905–7.CrossrefPubMedGoogle Scholar

  • 30.

    Greaves RF, Hunt RW, Chiriano AS, Zacharin MR. Luteinizing hormone and follicle-stimulating hormone levels in extreme prematurity: development of reference intervals. Pediatrics 2008;121:e574–80.CrossrefPubMedGoogle Scholar

  • 31.

    Tapanainen J, Koivisto M, Vihko R, Huhtaniemi I. Enhanced activity of the pituitary-gonadal axis in premature human infants. J Clin Endocrinol Metab 1981;52:235–8.PubMedCrossrefGoogle Scholar

  • 32.

    Shinkawa O, Furuhashi N, Fukaya T, Suzuki M, Kono H, et al. Changes of serum gonadotropin levels and sex differences in premature and mature infant during neonatal life. J Clin Endocrinol Metab 1983;56:1327–31.PubMedCrossrefGoogle Scholar

  • 33.

    Sharpe RM, Fraser HM, Brougham MF, McKinnell C, Morris KD, et al. Role of the neonatal period of pituitary-testicular activity in germ cell proliferation and differentiation in the primate testis. Hum Reprod 2003;18:2110–7.CrossrefPubMedGoogle Scholar

  • 34.

    Andersson AM, Toppari J, Haavisto AM, Petersen JH, Simell T, et al. Longitudinal reproductive hormone profiles in infants: peak of inhibin B levels in infant boys exceeds levels in adult men. J Clin Endocrinol Metab 1998;83:675–81.PubMedGoogle Scholar

  • 35.

    Bay K, Virtanen HE, Hartung S, Ivell R, Main KM, et al. Insulin-like factor 3 levels in cord blood and serum from children: effects of age, postnatal hypothalamic-pituitary-gonadal axis activation, and cryptorchidism. J Clin Endocrinol Metab 2007;92:4020–7.CrossrefPubMedGoogle Scholar

  • 36.

    Müller J, Skakkebaek NE. Fluctuations in the number of germ cells during the late foetal and early postnatal periods in boys. Acta Endocrinol (Copenh) 1984;105:271–4.CrossrefPubMedGoogle Scholar

  • 37.

    Cortes D, Müller J, Skakkebaek NE. Proliferation of Sertoli cells during development of the human testis assessed by stereological methods. Int J Androl 1987;10:589–96.CrossrefPubMedGoogle Scholar

  • 38.

    Swamy GK, Ostbye T, Skjaerven R. Association of preterm birth with long-term survival, reproduction, and next-generation preterm birth. J Am Med Assoc 2008;299:1429–36.CrossrefGoogle Scholar

  • 39.

    Yeaney NK, Murdoch EM, Lees CC. The extremely premature neonate: anticipating and managing care. Br Med J 2009;338:b2325.CrossrefGoogle Scholar

  • 40.

    Hines M. Early androgen influences on human neural and behavioural development. Early Hum Dev 2008;84:805–7.CrossrefPubMedGoogle Scholar

  • 41.

    Nagy Z, Jónsson B. Cerebral MRI findings in a cohort of ex-preterm and control adolescents. Acta Paediatr 2009;98:996–1001.CrossrefGoogle Scholar

  • 42.

    Mewes AU, Hüppi PS, Als H, Rybicki FJ, Inder TE, et al. Regional brain development in serial magnetic resonance imaging of low-risk preterm infants. Pediatrics 2006;118:22–33.Google Scholar

  • 43.

    Woodward LJ, Anderson PJ, Austin NC, Howard K, Inder TE. Neonatal MRI to predict neurodevelopmental outcomes in preterm infants. N Engl J Med 2006;355:685–94.PubMedCrossrefGoogle Scholar

  • 44.

    Anjari M, Srinivasan L, Allsop JM, Hajnal JV, Rutherford MA,et al. Diffusion tensor imaging with tract-based spatial statistics reveals local white matter abnormalities in preterm infants. Neuroimage 2007;35:1021–7.CrossrefPubMedGoogle Scholar

  • 45.

    Vangberg TR, Skranes J, Dale AM, Martinussen M, Brubakk AM, et al. Changes in white matter diffusion anisotropy in adolescents born prematurely. Neuroimage 2006;32:1538–48.CrossrefPubMedGoogle Scholar

  • 46.

    Constable RT, Ment LR, Vohr BR, Kesler SR, Fulbright RK, et al. Prematurely born children demonstrate white matter microstructural differences at 12 years of age, relative to term control subjects: an investigation of group and gender effects. Pediatrics 2008;121:1–2.Google Scholar

  • 47.

    Gozzo Y, Vohr B, Lacadie C, Hampson M, Katz KH, et al. Alterations in neural connectivity in preterm children at school age. Neuroimage 2009;48:1–2.Google Scholar

  • 48.

    Myers EH, Hampson M, Vohr B, Lacadie C, Frost SJ, et al. Functional connectivity to a right hemisphere language center in prematurely born adolescents. Neuroimage 2010;51:1445–52.PubMedCrossrefGoogle Scholar

  • 49.

    Geschwind N, Galaburda AM. Cerebral lateralization. Biological mechanisms, associations, and pathology: I. A hypothesis and a program for research. Arch Neurol 1985;42:1–2.Google Scholar

  • 50.

    Goodman R. Developmental disorders and structural brain development. In: Rutter M, Casaer P, editors. Biological Risk Factors for Psychosocial Disorder. Cambridge, MA: Cambridge University Press, 1991:20–49.Google Scholar

  • 51.

    Lyon G, Gadisseux J. Structural abnormalities of the brain in developmental disorders. In: Rutter M, Casaer P, editors. Biological Risk Factors for Psychosocial Disorder. Cambridge, MA: Cambridge University Press; 1991:1–19.Google Scholar

  • 52.

    Reiss AL, Kesler SR, Vohr B, Duncan CC, Katz KH, et al. Sex differences in cerebral volumes of 8-year-olds born preterm. J Pediatr 2004;145:242–9.CrossrefPubMedGoogle Scholar

  • 53.

    Rose J, Butler EE, Lamont LE, Barnes PD, Atlas SW, et al. Neonatal brain structure on MRI and diffusion tensor imaging, sex, and neurodevelopment in very-low-birthweight preterm children. Dev Med Child Neurol 2009;51:526–35.PubMedCrossrefGoogle Scholar

  • 54.

    Morris JA, Jordan CL, Breedlove SM. Sexual differentiation of the vertebrate nervous system. Nat Neurosci 2004;7:1034–9.CrossrefPubMedGoogle Scholar

  • 55.

    Karaismailoğlu S, Erdem A. The effects of prenatal sex steroid hormones on sexual differentiation of the brain. J Turkish Ger Gynecol Assoc 2013;14:163–7.CrossrefGoogle Scholar

  • 56.

    Ruigrok AN, Salimi-Khorshidi G, Lai M-C, Baron-Cohen S, Lombardo MV, et al. A meta-analysis of sex differences in human brain structure. Neurosci Biobehav Rev Elsevier Ltd 2014;39:34–50.CrossrefGoogle Scholar

  • 57.

    Chura LR, Lombardo MV, Ashwin E, Auyeung B, Chakrabarti B, et al. Organizational effects of fetal testosterone on human corpus callosum size and asymmetry. Psychoneuroendocrinology 2010;35:122–32.CrossrefPubMedGoogle Scholar

  • 58.

    Lombardo MV, Ashwin E, Auyeung B, Chakrabarti B, Taylor K, et al. Fetal testosterone influences sexually dimorphic gray matter in the human brain. J Neurosci 2012;32:674–80.PubMedCrossrefGoogle Scholar

  • 59.

    Auyeung B, Lombardo MV, Baron-Cohen S. Prenatal and postnatal hormone effects on the human brain and cognition. Pflugers Arch 2013;465:557–71.CrossrefPubMedGoogle Scholar

  • 60.

    Alexander GM. Postnatal testosterone concentrations and male social development. Front Endocrinol (Lausanne) 2014;5:1–15.Google Scholar

  • 61.

    Alexander GM, Wilcox T, Farmer ME. Hormone-behavior associations in early infancy. Horm Behav 2009;56:1–2.Google Scholar

  • 62.

    Friederici AD, Pannekamp A, Partsch C-J, Ulmen U, Oehler K, et al. Sex hormone testosterone affects language organization in the infant brain. Neuroreport 2008;19:283–6.CrossrefPubMedGoogle Scholar

  • 63.

    Alexander GM, Wilcox T, Woods R. Sex differences in infants’ visual interest in toys. Arch Sex Behav 2009;38:427–433.CrossrefPubMedGoogle Scholar

  • 64.

    Eaton WO, Enns LR. Sex differences in human motor activity level. Psychol Bull 1986:19–28.PubMedGoogle Scholar

  • 65.

    Alexander GM, Saenz J. Early androgens, activity levels and toy choices of children in the second year of life. Horm Behav 2012;62:500–4.PubMedCrossrefGoogle Scholar

  • 66.

    Alexander GM, Saenz J. Postnatal testosterone levels and temperament in early infancy. Arch Sex Behav 2011;40:1287–92.PubMedCrossrefGoogle Scholar

  • 67.

    Saenz J, Alexander GM. Postnatal testosterone levels and disorder relevant behavior in the second year of life. Biol Psychol 2013;94:152–9.PubMedCrossrefGoogle Scholar

  • 68.

    Weinberg MK, Tronick EZ, Cohn JF, Olson KL. Gender differences in emotional expressivity and self-regulation during early infancy. Dev Psychol 1999;35:175–88.PubMedCrossrefGoogle Scholar

  • 69.

    Baron-Cohen S, Lombardo MV, Auyeung B, Ashwin E, Chakrabarti B, et al. Why are autism spectrum conditions more prevalent in males? PLoS Biol 2011;9:e1001081.CrossrefPubMedGoogle Scholar

  • 70.

    Auyeung B, Ahluwalia J, Thomson L, Taylor K, Hackett G, et al. Prenatal versus postnatal sex steroid hormone effects on autistic traits in children at 18 to 24 months of age. Mol Autism 2012;3:17.PubMedCrossrefGoogle Scholar

  • 71.

    Martel MM, Klump K, Nigg JT, Breedlove SM, Sisk CL. Potential hormonal mechanisms of attention-deficit/hyperactivity disorder and major depressive disorder: a new perspective. Horm Behav 2009;55:465–79.PubMedCrossrefGoogle Scholar

  • 72.

    Martel MM, Nikolas M, Jernigan K, Friderici K, Nigg JT. Diversity in pathways to common childhood disruptive behavior disorders. J Abnorm Child Psychol 2012;40:1223–36.CrossrefPubMedGoogle Scholar

  • 73.

    Andersen SL, Teicher MH. Sex differences in dopamine receptors and their relevance to ADHD. Neurosci Biobehav Rev 2000;24:137–41.PubMedCrossrefGoogle Scholar

  • 74.

    King JA, Barkley RA, Delville Y, Ferris CF. Early androgen treatment decreases cognitive function and catecholamine innervation in an animal model of ADHD. Behav Brain Res 2000;107:35–43.CrossrefGoogle Scholar

  • 75.

    Sonuga-Barke EJS. Causal models of attention-deficit/hyperactivity disorder: from common simple deficits to multiple developmental pathways. Biol Psychiatry 2005;57:1231–8.PubMedCrossrefGoogle Scholar

  • 76.

    Shaw P, Stringaris A, Nigg J, Leibenluft E. Emotion dysregulation in attention deficit hyperactivity disorder. Am J Psychiatry 2014;171:276–93.CrossrefPubMedGoogle Scholar

  • 77.

    Leitner Y. The co-occurrence of autism and attention deficit hyperactivity disorder in children – what do we know? Front Hum Neurosci 2014;8:268.PubMedGoogle Scholar

  • 78.

    Lebowitz ER, Motlagh MG, Katsovich L, King RA, Lombroso PJ, et al. Tourette syndrome in youth with and without obsessive compulsive disorder and attention deficit hyperactivity disorder. Eur Child Adolesc Psychiatry 2012;21:1–2.Google Scholar

  • 79.

    Masi G, Millepiedi S, Mucci M, Bertini N, Pfanner C, et al. Comorbidity of obsessive-compulsive disorder and attention-deficit/hyperactivity disorder in referred children and adolescents. Compr Psychiatry 2006;47:1–2.Google Scholar

  • 80.

    Martin J, Hamilton B, Osterman M, Curtin S, Mathews T. Births: final data for 2012. Natl Vital Stat Reports 2013;62:1–87.Google Scholar

  • 81.

    Challis J, Newnham J, Petraglia F, Yeganegi M, Bocking A. Fetal sex and preterm birth. Placenta 2013;34:95–9.PubMedCrossrefGoogle Scholar

  • 82.

    Insel T, Cuthbert B, Garvey M, Heinssen R, Pine DS, et al. Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. Am J Psychiatry 2010;167:748–51.CrossrefGoogle Scholar

  • 83.

    Gyurak A, Gross JJ, Etkin A. Explicit and implicit emotion regulation: a dual-process framework. Cogn Emot 2011;25:400–12.PubMedCrossrefGoogle Scholar

  • 84.

    Hoffman L, Rice T. Regulation-Focused Psychotherapy for Children with Externalizing Behaviors (RFP-C). New York: Routledge, 2015.Google Scholar

  • 85.

    Rice TR, Hoffman L. Defense mechanisms and implicit emotion regulation: a comparison of a psychodynamic construct with one from contemporary neuroscience. J Am Psychoanal Assoc 2014;3:4.Google Scholar

About the article

Corresponding author: Timothy R. Rice, Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, Box 1230, New York, NY 10029, USA, Phone: 212 241 7175, Fax: 212 241 9311, E-mail: timothy.rice@mssm.edu

Received: 2015-05-19

Accepted: 2015-07-14

Published Online: 2015-09-10

Published in Print: 2017-04-01

Citation Information: International Journal of Adolescent Medicine and Health, Volume 29, Issue 2, 20150047, ISSN (Online) 2191-0278, ISSN (Print) 0334-0139, DOI: https://doi.org/10.1515/ijamh-2015-0047.

Export Citation

©2015 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Maria Katsigianni, Vasilios Karageorgiou, Irene Lambrinoudaki, and Charalampos Siristatidis
Molecular Psychiatry, 2019
Liang-Jen Wang, Miao-Chun Chou, Wen-Jiun Chou, Min-Jing Lee, Pao-Yen Lin, Sheng-Yu Lee, and Yi-Hsuan Lee
International Journal of Neuropsychopharmacology, 2016, Page pyw101

Comments (0)

Please log in or register to comment.
Log in