Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Adolescent Medicine and Health

Editor-in-Chief: Merrick, Joav

Editorial Board: Birch, Diana ML / Blum, Robert W. / Greydanus, MD, Dr. HC (Athens), Donald E. / Hardoff, Daniel / Kerr, Mike / Levy, Howard B / Morad, Mohammed / Omar, Hatim A. / de Paul, Joaquin / Rydelius, Per-Anders / Shek, Daniel T.L. / Sher, Leo / Silber, Tomas J. / Towns, Susan / Urkin, Jacob / Verhofstadt-Deneve, Leni / Zeltzer, Lonnie / Tenenbaum, Ariel


CiteScore 2018: 0.79

SCImago Journal Rank (SJR) 2018: 0.350
Source Normalized Impact per Paper (SNIP) 2018: 0.476

Online
ISSN
2191-0278
See all formats and pricing
More options …
Ahead of print

Issues

Fitness, body composition and vascular health in adolescent and young adult survivors of paediatric brain cancer and cranial radiotherapy

Treya M. Long
  • The University of Western Australia, School of Human Sciences, Exercise and Sport Science, Perth, Australia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Shoshana R. Rath
  • Princess Margaret Hospital, Department of Endocrinology, Perth, Australia
  • The University of Western Australia, School of Paediatrics and Child Health, Perth, Australia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tessa D. Maroni
  • The University of Western Australia, School of Human Sciences, Exercise and Sport Science, Perth, Australia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Karen E. Wallman
  • The University of Western Australia, School of Human Sciences, Exercise and Sport Science, Perth, Australia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Helen C. Atkinson / Nicholas G. Gottardo
  • The University of Western Australia, School of Paediatrics and Child Health, Perth, Australia
  • Princess Margaret Hospital, Department of Haematology and Oncology, Perth, Australia
  • Telethon Kids Institute, Perth, Australia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Catherine H. Cole
  • The University of Western Australia, School of Paediatrics and Child Health, Perth, Australia
  • Princess Margaret Hospital, Department of Haematology and Oncology, Perth, Australia
  • Telethon Kids Institute, Perth, Australia
  • Path West Laboratory Services, Department of Haematology, Perth, Australia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Catherine S. Choong
  • Princess Margaret Hospital, Department of Endocrinology, Perth, Australia
  • The University of Western Australia, School of Paediatrics and Child Health, Perth, Australia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Louise H. Naylor
  • Corresponding author
  • The University of Western Australia, School of Human Sciences, Exercise and Sport Science, Perth, Australia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-09-20 | DOI: https://doi.org/10.1515/ijamh-2017-0082

Abstract

Background

Survivors of paediatric brain cancer and/or cranial radiotherapy (CRT) are at an increased risk of developing serious comorbidities. Established risk factors for chronic disease include central obesity, endothelial abnormalities and diminished fitness.

Objectives

Here we characterised anthropometry, body composition, bone mineral density (BMD), heart rate (HR), blood pressure (BP), endothelial function, muscular strength and endurance and aerobic fitness in adolescent and young adult (AYA) survivors.

Methods

Twenty survivors (10 male, 10 female; 20 ± 2 years) were compared with 19 matched controls. Muscular strength was assessed using three repetition maximum tests, while muscular endurance was determined as number of repetitions performed per minute. Peak oxygen uptake (VO2 peak) was assessed on a treadmill using a modified chronotropic protocol. Anthropometric measurements, HR and BP were taken using standard clinical protocols, while body composition and BMD were determined using dual X-ray absorptiometry (DXA). Endothelial function was measured using the flow mediated dilation technique.

Results

Survivors demonstrated deficits in muscular strength (latissimus dorsi pull-down, p = 0.020; bicep curl, p = 0.009), muscular endurance (squats, p = 0.012; sit-ups, p = 0.030; push-ups, p = 0.013), minute ventilation at peak exericse (p = 0.002) and VO2peak (L/min, p = 0.002; mL/kg/min, p = 0.008; mL/kg LBM/min, p = 0.010). Additionally, survivors had greater waist-to-hip ratios (p = 0.032), resting HR (p = 0.048) and higher percentage of total body (p = 0.017), central (p = 0.009) and peripheral (p = 0.032) fat. Lean body mass (p = 0.004) and BMD (p = 0.005) were lower in the survivor group.

Conclusion

AYA survivors of paediatric brain cancer and/or CRT exhibit altered body composition, increased resting HR and reduced BMD, muscular strength, muscular endurance and cardiorespiratory fitness compared to controls.

Keywords: brain cancer; long-term survival; radiation therapy

References

  • [1]

    Oeffinger KC, Mertens AC, Sklar CA, Kawashima T, Hudson MM, Meadows AT, et al. Chronic health conditions in adult survivors of childhood cancer. N Engl J Med. 2006;355(15):1572–82.PubMedCrossrefGoogle Scholar

  • [2]

    Packer RJ, Gurney JG, Punyko JA, Donaldson SS, Inskip PD, Stovall M, et al. Long-term neurologic and neurosensory sequelae in adult survivors of a childhood brain tumor: childhood cancer survivor study. J Clin Oncol. 2003;21(17):3255–61.PubMedCrossrefGoogle Scholar

  • [3]

    Pereira AM, Schmid EM, Schutte PJ, Voormolen JH, Biermasz NR, van Thiel SW, et al. High prevalence of long-term cardiovascular, neurological and psychosocial morbidity after treatment for craniopharyngioma. Clin Endocrinol (Oxf). 2005;62(2):197–204.CrossrefPubMedGoogle Scholar

  • [4]

    Sklar C, Wolden S. Therapy for pediatric brain tumors and the risk of growth hormone deficiency. J Clin Oncol. 2011;29(36):4743–4.PubMedCrossrefWeb of ScienceGoogle Scholar

  • [5]

    Ness KK, Morris EB, Nolan VG, Howell CR, Gilchrist LS, Stovall M, et al. Physical performance limitations among adult survivors of childhood brain tumors. Cancer. 2010;116(12):3034–44.PubMedCrossrefWeb of ScienceGoogle Scholar

  • [6]

    Heikens J, Ubbink MC, van der Pal HP, Bakker PJ, Fliers E, Smilde TJ, et al. Long term survivors of childhood brain cancer have an increased risk for cardiovascular disease. Cancer. 2000;88(9):2116–21.PubMedCrossrefGoogle Scholar

  • [7]

    Lustig RH, Post SR, Srivannaboon K, Rose SR, Danish RK, Burghen GA, et al. Risk Factors for the development of obesity in children surviving brain tumors. J Clin Endocrinol Metab. 2003;88(2):611–6.PubMedCrossrefGoogle Scholar

  • [8]

    Piscione PJ, Bouffet E, Mabbott DJ, Shams I, Kulkarni AV. Physical functioning in pediatric survivors of childhood posterior fossa brain tumors. Neuro Oncol. 2013;16(1): 147–155.PubMedGoogle Scholar

  • [9]

    Grundy SM. Obesity, metabolic syndrome, and cardiovascular disease. J Clin Endocrinol Metab. 2004;89(6):2595–600.PubMedCrossrefGoogle Scholar

  • [10]

    Ness KK, Krull KR, Jones KE, Mulrooney DA, Armstrong GT, Green DM, et al. Physiologic frailty as a sign of accelerated aging among adult survivors of childhood cancer: a report from the St Jude Lifetime cohort study. J Clin Oncol. 2013;52:268.Web of ScienceGoogle Scholar

  • [11]

    Wolfe KR, Hunter GR, Madan-Swain A, Reddy AT, Baños J, Kana RK. Cardiorespiratory fitness in survivors of pediatric posterior fossa tumor. J Pediatr Hematol Oncol. 2012;34(6):e222.Web of ScienceCrossrefPubMedGoogle Scholar

  • [12]

    Thijssen DH, Black MA, Pyke KE, Padilla J, Atkinson G, Harris RA, et al. Assessment of flow-mediated dilation in humans: a methodological and physiological guideline. Am J Physiol Heart Circ Physiol. 2011;300(1):H2–12.CrossrefPubMedGoogle Scholar

  • [13]

    Global Database on Body Mass Index [Internet]. 2016. Available from: http://apps.who.int/bmi/index.jsp?introPage=intro_3.html.Google Scholar

  • [14]

    Armstrong L. ACSM’s guidelines for exercise testing and prescription/American college of sports medicine. Philadelphia: Lippincott Williams & Wilkins; 2006.Google Scholar

  • [15]

    Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377–81.PubMedGoogle Scholar

  • [16]

    Golding L, Myers C, Sinning W. The Y’s way to physical fitness: the complete guide to fitness testing and instruction. 3rd ed. Champaign, IL : Published for YMCA of the USA by Human Kinetics Publishers, ©1989; 1986.Google Scholar

  • [17]

    Ness KK, Hudson MM, Ginsberg JP, Nagarajan R, Kaste SC, Marina N, et al. Physical performance limitations in the childhood cancer survivor study cohort. J Clin Oncol. 2009;27(14):2382–9.PubMedCrossrefWeb of ScienceGoogle Scholar

  • [18]

    Warburton DE, Nicol CW, Bredin SS. Health benefits of physical activity: the evidence. Can Med Assoc J. 2006;174(6):801–9.CrossrefGoogle Scholar

  • [19]

    Haskell WL, Lee I-M, Pate RR, Powell KE, Blair SN, Franklin BA, et al. Physical activity and public health: updated recommendation for adults from the American college of sports medicine and the American heart association. Circulation. 2007;116(9):1081.Web of ScienceCrossrefPubMedGoogle Scholar

  • [20]

    Fialka-Moser V, Crevenna R, Korpan M, Quittan M. Cancer rehabilitation: particularly with aspects on physical impairments. J Rehabil Med. 2003;35(4):153–62.PubMedCrossrefGoogle Scholar

  • [21]

    Ness KK, Baker KS, Dengel DR, Youngren N, Sibley S, Mertens AC, et al. Body composition, muscle strength deficits and mobility limitations in adult survivors of childhood acute lymphoblastic leukemia. Pediatr Blood Cancer. 2007;49(7):975–81.CrossrefWeb of SciencePubMedGoogle Scholar

  • [22]

    Kohl HW, Craig CL, Lambert EV, Inoue S, Alkandari JR, Leetongin G, et al. The pandemic of physical inactivity: global action for public health. The Lancet. 2012;380(9838):294–305.CrossrefGoogle Scholar

  • [23]

    Brach JS, Simonsick EM, Kritchevsky S, Yaffe K, Newman AB. The association between physical function and lifestyle activity and exercise in the health, aging and body composition study. J Am Geriatr Soc. 2004;52(4):502–9.CrossrefPubMedGoogle Scholar

  • [24]

    Florin TA, Fryer GE, Miyoshi T, Weitzman M, Mertens AC, Hudson MM, et al. Physical inactivity in adult survivors of childhood acute lymphoblastic leukemia: a report from the childhood cancer survivor study. Cancer Epidemiol Biomarkers Prev. 2007;16(7):1356–63.PubMedCrossrefWeb of ScienceGoogle Scholar

  • [25]

    Järvelä L, Niinikoski H, Lähteenmäki P, Heinonen O, Kapanen J, Arola M, et al. Physical activity and fitness in adolescent and young adult long-term survivors of childhood acute lymphoblastic leukaemia. J Cancer Surviv. 2010;4(4):339–45.Web of ScienceCrossrefGoogle Scholar

  • [26]

    Blair SN, Brodney S. Effects of physical inactivity and obesity on morbidity and mortality: current evidence and research issues. Med Sci Sports Exerc. 1999;31:S646–S62.Google Scholar

  • [27]

    Greving D, Santacroce S. Cardiovascular late effects (childhood cancer survivorship). J Pediatr Oncol Nurs. 2005;22(1):38–47.PubMedCrossrefGoogle Scholar

  • [28]

    Steinberger J, Sinaiko AR, Kelly AS, Leisenring WM, Steffen LM, Goodman P, et al. Cardiovascular risk and insulin resistance in childhood cancer survivors. J Pediatr. 2012;160(3):494–9.CrossrefPubMedGoogle Scholar

  • [29]

    Pietilä S, Mäkipernaa A, Sievänen H, Koivisto AM, Wigren T, Lenko HL. Obesity and metabolic changes are common in young childhood brain tumor survivors. Pediatr Blood Cancer. 2009;52(7):853–9.Web of ScienceCrossrefPubMedGoogle Scholar

  • [30]

    Gurney JG, Ness KK, Sibley SD, O’Leary M, Dengel DR, Lee JM, et al. Metabolic syndrome and growth hormone deficiency in adult survivors of childhood acute lymphoblastic leukemia. Cancer. 2006;107(6):1303–12.CrossrefPubMedGoogle Scholar

  • [31]

    Gurney JG, Ness KK, Stovall M, Wolden S, Punyko JA, Neglia JP, et al. Final height and body mass index among adult survivors of childhood brain cancer: childhood cancer survivor study. J Clin Endocrinol Metab. 2003;88(10):4731–9.PubMedCrossrefGoogle Scholar

  • [32]

    Noorda E, Somers R, Van Leeuwen F, Vulsma T, Behrendt H, Group ftDLES. Adult height and age at menarche in childhood cancer survivors. Eur J Cancer. 2001;37(5):605–12.CrossrefPubMedGoogle Scholar

  • [33]

    Brownstein CM, Mertens AC, Mitby PA, Stovall M, Qin J, Heller G, et al. Factors that affect final height and change in height standard deviation scores in survivors of childhood cancer treated with growth hormone: a report from the childhood cancer survivor study. J Clin Endocrinol Metab. 2004;89(9):4422–7.CrossrefPubMedGoogle Scholar

  • [34]

    Hesseling PB, Hough SF, Nel ED, van Riet FA, Beneke T, Wessels G. Bone mineral density in long-term survivors of childhood cancer. Int J Cancer. 1998;78(s 11):44–7.CrossrefGoogle Scholar

  • [35]

    Wasilewski-Masker K, Kaste SC, Hudson MM, Esiashvili N, Mattano LA, Meacham LR. Bone mineral density deficits in survivors of childhood cancer: long-term follow-up guidelines and review of the literature. Pediatr. 2008;121(3):e705–e13.Google Scholar

  • [36]

    Kanis JA, Borgstrom F, De Laet C, Johansson H, Johnell O, Jonsson B, et al. Assessment of fracture risk. Osteoporos Int. 2005;16(6):581–9.CrossrefPubMedGoogle Scholar

  • [37]

    Marshall D, Johnell O, Wedel H. Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. Br Med J. 1996;312(7041):1254–9.CrossrefGoogle Scholar

About the article

Received: 2017-05-09

Accepted: 2017-07-19

Published Online: 2017-09-20


Citation Information: International Journal of Adolescent Medicine and Health, 20170082, ISSN (Online) 2191-0278, DOI: https://doi.org/10.1515/ijamh-2017-0082.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in