Jump to ContentJump to Main Navigation
Show Summary Details
More options …

The International Journal of Biostatistics

Ed. by Chambaz, Antoine / Hubbard, Alan E. / van der Laan, Mark J.

2 Issues per year


IMPACT FACTOR 2016: 0.500
5-year IMPACT FACTOR: 0.862

CiteScore 2016: 0.42

SCImago Journal Rank (SJR) 2016: 0.488
Source Normalized Impact per Paper (SNIP) 2016: 0.467

Mathematical Citation Quotient (MCQ) 2016: 0.09

Online
ISSN
1557-4679
See all formats and pricing
More options …

Targeted Maximum Likelihood Learning

Mark J. van der Laan / Daniel Rubin
Published Online: 2006-12-28 | DOI: https://doi.org/10.2202/1557-4679.1043

Suppose one observes a sample of independent and identically distributed observations from a particular data generating distribution. Suppose that one is concerned with estimation of a particular pathwise differentiable Euclidean parameter. A substitution estimator evaluating the parameter of a given likelihood based density estimator is typically too biased and might not even converge at the parametric rate: that is, the density estimator was targeted to be a good estimator of the density and might therefore result in a poor estimator of a particular smooth functional of the density. In this article we propose a one step (and, by iteration, k-th step) targeted maximum likelihood density estimator which involves 1) creating a hardest parametric submodel with parameter epsilon through the given density estimator with score equal to the efficient influence curve of the pathwise differentiable parameter at the density estimator, 2) estimating epsilon with the maximum likelihood estimator, and 3) defining a new density estimator as the corresponding update of the original density estimator. We show that iteration of this algorithm results in a targeted maximum likelihood density estimator which solves the efficient influence curve estimating equation and thereby yields a locally efficient estimator of the parameter of interest, under regularity conditions. In particular, we show that, if the parameter is linear and the model is convex, then the targeted maximum likelihood estimator is often achieved in the first step, and it results in a locally efficient estimator at an arbitrary (e.g., heavily misspecified) starting density.We also show that the targeted maximum likelihood estimators are now in full agreement with the locally efficient estimating function methodology as presented in Robins and Rotnitzky (1992) and van der Laan and Robins (2003), creating, in particular, algebraic equivalence between the double robust locally efficient estimators using the targeted maximum likelihood estimators as an estimate of its nuisance parameters, and targeted maximum likelihood estimators. In addition, it is argued that the targeted MLE has various advantages relative to the current estimating function based approach. We proceed by providing data driven methodologies to select the initial density estimator for the targeted MLE, thereby providing data adaptive targeted maximum likelihood estimation methodology. We illustrate the method with various worked out examples.

Keywords: causal effect; cross-validation; efficient influence curve; estimating function; locally efficient estimation; loss function; maximum likelihood estimation; sieve; targeted maximum likelihood estimation; variable importance

About the article

Published Online: 2006-12-28


Citation Information: The International Journal of Biostatistics, ISSN (Online) 1557-4679, DOI: https://doi.org/10.2202/1557-4679.1043.

Export Citation

©2011 Walter de Gruyter GmbH & Co. KG, Berlin/Boston. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Daniel M. Brown, Sally Picciotto, Sadie Costello, Andreas M. Neophytou, Monika A. Izano, Jacqueline M. Ferguson, and Ellen A. Eisen
Current Environmental Health Reports, 2017
[2]
Fraser W. Gaspar, Jonathan Chevrier, Lesliam Quirós-Alcalá, Jonah M. Lipsitt, Dana Boyd Barr, Nina Holland, Riana Bornman, and Brenda Eskenazi
Environmental Health Perspectives, 2017, Volume 125, Number 7
[3]
Susan Gruber and Mark J van der Laan
Statistical Methods in Medical Research, 2015, Volume 24, Number 6, Page 1003
[4]
Mireille E. Schnitzer, Erica E. M. Moodie, and Robert W. Platt
Biostatistics, 2013, Volume 14, Number 1, Page 1
[5]
Daniel Scharfstein, Aidan McDermott, Iván Díaz, Marco Carone, Nicola Lunardon, and Ibrahim Turkoz
Biometrics, 2017
[6]
Sherri Rose
American Journal of Epidemiology, 2013, Volume 177, Number 5, Page 443
[7]
Michele Jonsson Funk, Daniel Westreich, Chris Wiesen, Til Stürmer, M. Alan Brookhart, and Marie Davidian
American Journal of Epidemiology, 2011, Volume 173, Number 7, Page 761
[8]
Kara E. Rudolph, Iván Díaz, Michael Rosenblum, and Elizabeth A. Stuart
American Journal of Epidemiology, 2014, Volume 180, Number 7, Page 737
[9]
Frank M. Davis, Danielle C. Sutzko, Scott F. Grey, M. Ashraf Mansour, Krishna M. Jain, Timothy J. Nypaver, Greg Gaborek, and Peter K. Henke
Journal of Vascular Surgery, 2017, Volume 65, Number 6, Page 1769
[10]
Victor Chernozhukov, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian Hansen, and Whitney Newey
American Economic Review, 2017, Volume 107, Number 5, Page 261
[11]
Susan Athey, Guido Imbens, Thai Pham, and Stefan Wager
American Economic Review, 2017, Volume 107, Number 5, Page 278
[12]
Benjamin Arnold, Byron Arana, Daniel Mäusezahl, Alan Hubbard, and John M Colford
International Journal of Epidemiology, 2009, Volume 38, Number 6, Page 1651
[13]
Susan Athey and Guido W. Imbens
Journal of Economic Perspectives, 2017, Volume 31, Number 2, Page 3
[14]
K. Ellicott Colson, Kara E. Rudolph, Scott C. Zimmerman, Dana E. Goin, Elizabeth A. Stuart, Mark van der Laan, and Jennifer Ahern
Scientific Reports, 2016, Volume 6, Number 1
[15]
Alexander P Keil, Eric J Daza, Stephanie M Engel, Jessie P Buckley, and Jessie K Edwards
Statistical Methods in Medical Research, 2017, Page 096228021769466
[16]
Wei Luo, Yeying Zhu, and Debashis Ghosh
Biometrika, 2017, Page asw068
[17]
Zhiwei Zhang, Jie Zhou, Weihua Cao, and Jun Zhang
Statistical Methods in Medical Research, 2016, Volume 25, Number 1, Page 315
[18]
Zhiwei Zhang, Wei Liu, Bo Zhang, Li Tang, and Jun Zhang
Statistical Methods in Medical Research, 2016, Volume 25, Number 5, Page 2053
[19]
Iván Díaz, Alan Hubbard, Anna Decker, Mitchell Cohen, and Kewei Chen
PLOS ONE, 2015, Volume 10, Number 3, Page e0120031
[20]
Michael Rosenblum, Steven G. Deeks, Mark van der Laan, David R. Bangsberg, and Gary Maartens
PLoS ONE, 2009, Volume 4, Number 9, Page e7196
[21]
Jayne Byakika-Tusiime, Eric C. Polley, Jessica H. Oyugi, David R. Bangsberg, and Nitika Pant Pai
PLoS ONE, 2013, Volume 8, Number 9, Page e70375
[22]
Megan S. Schuler and Sherri Rose
American Journal of Epidemiology, 2017, Volume 185, Number 1, Page 65
[23]
Stephanie Sapp, Mark J. van der Laan, and Kimberly Page
The International Journal of Biostatistics, 2014, Volume 10, Number 1
[24]
Alisa Stephens, Eric Tchetgen Tchetgen, and Victor De Gruttola
The International Journal of Biostatistics, 2014, Volume 10, Number 1
[25]
Kara E. Rudolph and Mark J. van der Laan
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2016
[26]
Axel Mayer, Lisa Dietzfelbinger, Yves Rosseel, and Rolf Steyer
Multivariate Behavioral Research, 2016, Volume 51, Number 2-3, Page 374
[27]
Yebin Tao and Lu Wang
Biometrics, 2017, Volume 73, Number 1, Page 145
[28]
Michael P. Wallace, Erica E. M. Moodie, and David A. Stephens
Biometrics, 2016, Volume 72, Number 3, Page 855
[29]
Iván Díaz, Elizabeth Colantuoni, and Michael Rosenblum
Biometrics, 2016, Volume 72, Number 2, Page 422
[31]
Ziyun Xu and Éric Archambault
Scientometrics, 2015, Volume 105, Number 2, Page 1041
[32]
Constantine E. Frangakis, Tianchen Qian, Zhenke Wu, and Ivan Diaz
Biometrics, 2015, Volume 71, Number 4, Page 867
[33]
Iván Díaz and Michael Rosenblum
The International Journal of Biostatistics, 2015, Volume 11, Number 2
[34]
Mireille E. Schnitzer, Judith J. Lok, and Ronald J. Bosch
Biostatistics, 2015, Page kxv028
[35]
M. J. Cohen
British Journal of Surgery, 2012, Volume 99, Number 4, Page 487
[36]
Thaddeus J. Haight, Yue Wang, Mark J. van der Laan, and Ira B. Tager
Computational Statistics & Data Analysis, 2010, Volume 54, Number 12, Page 3080
[38]
Samuel D. Lendle, Bruce Fireman, and Mark J. van der Laan
Journal of Clinical Epidemiology, 2013, Volume 66, Number 8, Page S91
[39]
MANABU KUROKI and ZHIHONG CAI
Scandinavian Journal of Statistics, 2011, Page no
[40]
Markus Frölich and Martin Huber
Journal of the American Statistical Association, 2014, Volume 109, Number 508, Page 1697
[41]
Mark J. van der Laan and Richard J. C. M. Starmans
Advances in Statistics, 2014, Volume 2014, Page 1
[42]
Zhiwei Zhang, Richard M. Kotz, Chenguang Wang, Shiling Ruan, and Martin Ho
Biometrics, 2013, Volume 69, Number 2, Page 318
[43]
Susan Gruber and Mark J. van der Laan
Biometrics, 2013, Volume 69, Number 1, Page 254
[44]
Alisa J. Stephens, Eric J. Tchetgen Tchetgen, and Victor De Gruttola
Statistics in Medicine, 2012, Volume 31, Number 10, Page 915
[45]
Zhiwei Zhang, Zhen Chen, James F. Troendle, and Jun Zhang
Biometrics, 2012, Volume 68, Number 3, Page 697
[46]
Iván Díaz Muñoz and Mark van der Laan
Biometrics, 2012, Volume 68, Number 2, Page 541
[47]
Hui Wang, Sherri Rose, and Mark J. van der Laan
Statistics & Probability Letters, 2011, Volume 81, Number 7, Page 792
[48]
Michael Rosenblum, Nicholas P. Jewell, Mark van der Laan, Stephen Shiboski, Ariane van der Straten, and Nancy Padian
Journal of the Royal Statistical Society: Series A (Statistics in Society), 2009, Volume 172, Number 2, Page 443
[49]
K. L. Moore and M. J. van der Laan
Statistics in Medicine, 2009, Volume 28, Number 1, Page 39
[50]
Oliver Bembom, Maya L. Petersen, Soo-Yon Rhee, W. Jeffrey Fessel, Sandra E. Sinisi, Robert W. Shafer, and Mark J. van der Laan
Statistics in Medicine, 2009, Volume 28, Number 1, Page 152
[51]
Oliver Bembom and Mark J. van der Laan
Statistics in Medicine, 2008, Volume 27, Number 19, Page 3689

Comments (0)

Please log in or register to comment.
Log in