Jump to ContentJump to Main Navigation
Show Summary Details
More options …

The International Journal of Biostatistics

Ed. by Chambaz, Antoine / Hubbard, Alan E. / van der Laan, Mark J.

2 Issues per year

IMPACT FACTOR 2016: 0.500
5-year IMPACT FACTOR: 0.862

CiteScore 2016: 0.42

SCImago Journal Rank (SJR) 2016: 0.488
Source Normalized Impact per Paper (SNIP) 2016: 0.467

Mathematical Citation Quotient (MCQ) 2016: 0.09

See all formats and pricing
More options …

Estimating Multilevel Logistic Regression Models When the Number of Clusters is Low: A Comparison of Different Statistical Software Procedures

Peter C Austin
Published Online: 2010-04-22 | DOI: https://doi.org/10.2202/1557-4679.1195

Multilevel logistic regression models are increasingly being used to analyze clustered data in medical, public health, epidemiological, and educational research. Procedures for estimating the parameters of such models are available in many statistical software packages. There is currently little evidence on the minimum number of clusters necessary to reliably fit multilevel regression models. We conducted a Monte Carlo study to compare the performance of different statistical software procedures for estimating multilevel logistic regression models when the number of clusters was low. We examined procedures available in BUGS, HLM, R, SAS, and Stata. We found that there were qualitative differences in the performance of different software procedures for estimating multilevel logistic models when the number of clusters was low. Among the likelihood-based procedures, estimation methods based on adaptive Gauss-Hermite approximations to the likelihood (glmer in R and xtlogit in Stata) or adaptive Gaussian quadrature (Proc NLMIXED in SAS) tended to have superior performance for estimating variance components when the number of clusters was small, compared to software procedures based on penalized quasi-likelihood. However, only Bayesian estimation with BUGS allowed for accurate estimation of variance components when there were fewer than 10 clusters. For all statistical software procedures, estimation of variance components tended to be poor when there were only five subjects per cluster, regardless of the number of clusters.

Keywords: statistical software; multilevel models; hierarchical models; random effects model; mixed effects model; generalized linear mixed models; Monte Carlo simulations; Bayesian analysis; R; SAS; Stata; BUGS

About the article

Published Online: 2010-04-22

Citation Information: The International Journal of Biostatistics, ISSN (Online) 1557-4679, DOI: https://doi.org/10.2202/1557-4679.1195.

Export Citation

©2011 Walter de Gruyter GmbH & Co. KG, Berlin/Boston. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Giuseppe Carrà, Cristina Crocamo, and Paul Bebbington
International Gambling Studies, 2017, Page 1
Damien Rousselière and Samira Rousselière
Public Understanding of Science, 2017, Volume 26, Number 6, Page 650
Lisa Townsend, Rashelle Musci, Elizabeth Stuart, Anne Ruble, Mary B. Beaudry, Barbara Schweizer, Megan Owen, Carly Goode, Sarah L. Johnson, Catherine Bradshaw, Holly Wilcox, and Karen Swartz
Journal of School Health, 2017, Volume 87, Number 8, Page 567
Douglas Eadie, Martine Stead, Anne Marie MacKintosh, Susan Murray, Catherine Best, Jamie Pearce, Catherine Tisch, Winfried van der Sluijs, Amanda Amos, Andy MacGregor, Sally Haw, and Lamberto Manzoli
PLOS ONE, 2016, Volume 11, Number 3, Page e0152178
Tae Jun Kim, Nico Vonneilich, Daniel Lüdecke, and Olaf von dem Knesebeck
Social Science & Medicine, 2017, Volume 176, Page 158
Monica Taljaard, Steven Teerenstra, Noah M Ivers, and Dean A Fergusson
Clinical Trials, 2016, Volume 13, Number 4, Page 459
Martí Casals, Montserrat Girabent-Farrés, Josep L. Carrasco, and Antonio Guilherme Pacheco
PLoS ONE, 2014, Volume 9, Number 11, Page e112653
Erika L. Moen, Catherine J. Fricano-Kugler, Bryan W. Luikart, A. James O’Malley, and Jaroslaw Harezlak
PLOS ONE, 2016, Volume 11, Number 1, Page e0146721
Andrea Benedetti, Robert Platt, Juli Atherton, and Gerardo Chowell
PLoS ONE, 2014, Volume 9, Number 1, Page e84601
Daniel McNeish and Kathryn R. Wentzel
Multivariate Behavioral Research, 2017, Volume 52, Number 2, Page 200
Thomas P. A. Debray, Karel G. M. Moons, Ghada Mohammed Abdallah Abo-Zaid, Hendrik Koffijberg, Richard David Riley, and Adrian V. Hernandez
PLoS ONE, 2013, Volume 8, Number 4, Page e60650
Danielle L. Burke, Joie Ensor, and Richard D. Riley
Statistics in Medicine, 2017, Volume 36, Number 5, Page 855
Lorenz Uhlmann, Katrin Jensen, and Meinhard Kieser
Research Synthesis Methods, 2017, Volume 8, Number 2, Page 236
Steffen Andreas Schüle, Rüdiger von Kries, Hermann Fromme, and Gabriele Bolte
BMC Obesity, 2016, Volume 3, Number 1
N. Shackleton, D. Hale, C. Bonell, and R.M Viner
SSM - Population Health, 2016, Volume 2, Page 217
Christy A. Visher, Pamela K. Lattimore, Kelle Barrick, and Stephen Tueller
Justice Quarterly, 2017, Volume 34, Number 1, Page 136
Pau Baizan, Bruno Arpino, and Carlos Eric Delclòs
European Journal of Population, 2016, Volume 32, Number 1, Page 1
Mark L. Bryan and Stephen P. Jenkins
European Sociological Review, 2016, Volume 32, Number 1, Page 3
Rosa Duarte, José-Julián Escario, and José-Alberto Molina
Journal of Substance Use, 2015, Page 1
Jason A. Schoeneberger
The Journal of Experimental Education, 2016, Volume 84, Number 2, Page 373
Ignacio Ferreira-González, Xavier Carrillo, Victoria Martín, José M. de la Torre Hernández, José Antonio Baz, Josep Navarro Manchón, Mónica Masotti, Ángel Cequier, Mérida Cárdenas, and Fernando Alfonso Manterola
Revista Española de Cardiología, 2016, Volume 69, Number 2, Page 117
Ignacio Ferreira-González, Xavier Carrillo, Victoria Martín, José M. de la Torre Hernández, José Antonio Baz, Josep Navarro Manchón, Mónica Masotti, Ángel Cequier, Mérida Cárdenas, and Fernando Alfonso Manterola
Revista Española de Cardiología (English Edition), 2016, Volume 69, Number 2, Page 117
Melanie Bannister-Tyrrell, Jillian A. Patterson, Jane B. Ford, Jonathan M. Morris, Michael C. Nicholl, and Christine L. Roberts
Australian and New Zealand Journal of Obstetrics and Gynaecology, 2015, Volume 55, Number 4, Page 350
Giorgio Di Gessa, Karen Glaser, Debora Price, Eloi Ribe, and Anthea Tinker
The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 2016, Volume 71, Number 1, Page 141
Nazim Habibov
Social Policy & Administration, 2013, Volume 47, Number 3, Page 262
Chris F Johnson, Nadine J Dougall, Brian Williams, Stephen A MacGillivray, Alasdair I Buchanan, and Richard D Hassett
BMC Family Practice, 2014, Volume 15, Number 1
Shahab Jolani, Thomas P. A. Debray, Hendrik Koffijberg, Stef van Buuren, and Karel G. M. Moons
Statistics in Medicine, 2015, Volume 34, Number 11, Page 1841
Daniel M. McNeish and Laura M. Stapleton
Educational Psychology Review, 2016, Volume 28, Number 2, Page 295
Luca Börger and Thomas D Nudds
Ecological Applications, 2014, Volume 24, Number 1, Page 121

Comments (0)

Please log in or register to comment.
Log in