Jump to ContentJump to Main Navigation
Show Summary Details
More options …

The International Journal of Biostatistics

Ed. by Chambaz, Antoine / Hubbard, Alan E. / van der Laan, Mark J.


IMPACT FACTOR 2018: 1.309

CiteScore 2018: 1.11

SCImago Journal Rank (SJR) 2018: 1.325
Source Normalized Impact per Paper (SNIP) 2018: 0.715

Mathematical Citation Quotient (MCQ) 2018: 0.03

Online
ISSN
1557-4679
See all formats and pricing
More options …

A Tutorial on Methods to Estimating Clinically and Policy-Meaningful Measures of Treatment Effects in Prospective Observational Studies: A Review

Peter C Austin / Andreas Laupacis
Published Online: 2011-01-06 | DOI: https://doi.org/10.2202/1557-4679.1285

In randomized controlled trials (RCTs), treatment assignment is unconfounded with baseline covariates, allowing outcomes to be directly compared between treatment arms. When outcomes are binary, the effect of treatment can be summarized using relative risks, absolute risk reductions and the number needed to treat (NNT). When outcomes are time-to-event in nature, the effect of treatment on the absolute reduction of the risk of an event occurring within a specified duration of follow-up and the associated NNT can be estimated. In observational studies of the effect of treatments on health outcomes, treatment is frequently confounded with baseline covariates. Regression adjustment is commonly used to estimate the adjusted effect of treatment on outcomes. We highlight several limitations of measures of treatment effect that are directly obtained from regression models. We illustrate how both regression-based approaches and propensity-score based approaches allow one to estimate the same measures of treatment effect as those that are commonly reported in RCTs. The CONSORT statement recommends that both relative and absolute measures of treatment effects be reported for RCTs with dichotomous outcomes. The methods described in this paper will allow for similar reporting in observational studies.

Keywords: randomized controlled trials; observational studies; causal effects; treatment effects; absolute risk reduction; relative risk reduction; number needed to treat; odds ratio; survival time; propensity score; propensity-score matching; regression; non-randomized studies; confounding

About the article

Published Online: 2011-01-06


Citation Information: The International Journal of Biostatistics, Volume 7, Issue 1, Pages 1–32, ISSN (Online) 1557-4679, DOI: https://doi.org/10.2202/1557-4679.1285.

Export Citation

©2011 Walter de Gruyter GmbH & Co. KG, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Gavin M. Hamilton, Reva Ramlogan, Anne Lui, Colin J. L. McCartney, Faraj Abdallah, Jason McVicar, and Daniel I. McIsaac
Anesthesiology, 2019, Volume 131, Number 6, Page 1254
[2]
Gavin M. Hamilton, Manoj M. Lalu, Reva Ramlogan, Gregory L. Bryson, Faraj W. Abdallah, Colin J. L. McCartney, and Daniel I. McIsaac
Anesthesiology, 2019, Page 1
[3]
Samjhana Shrestha, Yan Kestens, Frédérique Thomas, Tarik El Aarbaoui, and Basile Chaix
Social Science & Medicine, 2019, Volume 236, Page 112406
[4]
Jih-Shuin Jerng, Chao-Hsiun Tang, Rhoda Wen-Yi Cheng, Michael Yao-Hsien Wang, and Kuan-Yu Hung
Current Medical Research and Opinion, 2019, Volume 35, Number 7, Page 1265
[5]
Jordan K. Schaefer, Yun Li, Xiaokui Gu, Nicole M. Souphis, Brian Haymart, Eva Kline-Rogers, Steven L. Almany, Scott Kaatz, Jay H. Kozlowski, Gregory D. Krol, Suman L. Sood, James B. Froehlich, and Geoffrey D. Barnes
JAMA Internal Medicine, 2019, Volume 179, Number 4, Page 533
[6]
Richard J. Cook and Richard B. Weiskopf
Anesthesiology, 2018, Volume 129, Number 6, Page 1060
[7]
Peter C. Austin and Jason P. Fine
Statistics in Medicine, 2018
[8]
Bob Siegerink and Jessica L. Rohmann
Research and Practice in Thrombosis and Haemostasis, 2018
[9]
Yasuhiro Hagiwara, Musashi Fukuda, and Yutaka Matsuyama
American Journal of Epidemiology, 2018
[10]
Ryu Komatsu, Nika Karimi, Nicole M. Zimmerman, Daniel I. Sessler, C. A. Bashour, Edward G. Soltesz, and Alparslan Turan
Journal of Anesthesia, 2018
[11]
Sean D. Sullivan, Timothy S. Bailey, Ronan Roussel, Fang Liz Zhou, Zsolt Bosnyak, Ronald Preblick, Jukka Westerbacka, Rishab A. Gupta, and Lawrence Blonde
Diabetes, Obesity and Metabolism, 2018
[12]
Gian Paolo Fadini, Giancarlo Zatti, Ileana Baldi, Daniele Bottigliengo, Agostino Consoli, Andrea Giaccari, Giorgio Sesti, and Angelo Avogaro
Diabetes, Obesity and Metabolism, 2018
[14]
Amand F. Schmidt and Chris Finan
Journal of Clinical Epidemiology, 2017
[15]
Basile Chaix, Dustin Duncan, Julie Vallée, Anne Vernez-Moudon, Tarik Benmarhnia, and Yan Kestens
Epidemiology, 2017, Volume 28, Number 6, Page 789
[16]
Daniel I. McIsaac, Colin J. L. McCartney, and Carl van Walraven
Anesthesiology, 2017, Volume 127, Number 4, Page 719
[17]
Chia-Ter Chao, Chao-Hsiun Tang, Rhoda Wen-Yi Cheng, Michael Yao-Hsien Wang, and Kuan-Yu Hung
Current Medical Research and Opinion, 2017, Volume 33, Number 9, Page 1705
[18]
Diogo Mendes, Carlos Alves, and Francisco Batel-Marques
BMC Medicine, 2017, Volume 15, Number 1
[19]
Carmen Messerlian and Audrey J. Gaskins
Current Epidemiology Reports, 2017, Volume 4, Number 2, Page 124
[20]
Myoung Su Choi, Ho Yun Lee, Chin Saeng Cho, and Hanjun Liu
PLoS ONE, 2014, Volume 9, Number 11, Page e111479
[21]
David Hajage, Yann De Rycke, Guillaume Chauvet, and Florence Tubach
Statistics in Medicine, 2017, Volume 36, Number 4, Page 687
[22]
Basile Chaix, Yan Kestens, Dustin T. Duncan, Ruben Brondeel, Julie Méline, Tarik El Aarbaoui, Bruno Pannier, and Juan Merlo
American Journal of Epidemiology, 2016, Volume 184, Number 8, Page 579
[23]
David Evans, Basile Chaix, Thierry Lobbedez, Christian Verger, and Antoine Flahault
BMC Medical Research Methodology, 2012, Volume 12, Number 1
[24]
Federico Ambrogi, Elia Biganzoli, and Patrizia Boracchi
BMC Medical Research Methodology, 2014, Volume 14, Number 1
[26]
S.E. Baumeister, G. Schomerus, R.M. Andersen, F. Tost, M.R.P. Markus, H. Völzke, and C. Jürgens
Nutrition, Metabolism and Cardiovascular Diseases, 2015, Volume 25, Number 10, Page 906
[27]
Gregory S. Sawicki and Christopher H. Goss
Pediatric Pulmonology, 2015, Volume 50, Number S40, Page S74
[28]
C. King, J. Beard, A.C. Crampin, A. Costello, C. Mwansambo, N.A. Cunliffe, R.S. Heyderman, N. French, and N. Bar-Zeev
Vaccine, 2015, Volume 33, Number 38, Page 4748
[30]
E. Haukka, K.-P. Martimo, T. Kivekas, R. Horppu, T. Lallukka, S. Solovieva, R. Shiri, I. Pehkonen, E.-P. Takala, E. MacEachen, and E. Viikari-Juntura
BMJ Open, 2015, Volume 5, Number 5, Page e008300
[31]
Ian T. Rossman and Jeffrey A. Cohen
Nature Reviews Neurology, 2015, Volume 11, Number 6, Page 316
[33]
Amand F. Schmidt, Rolf H.H. Groenwold, Mirjam J. Knol, Arno W. Hoes, Mirjam Nielen, Kit C.B. Roes, Anthonius de Boer, and Olaf H. Klungel
Journal of Clinical Epidemiology, 2014, Volume 67, Number 7, Page 821
[34]
Zhenzhen Su, Yi Li, Yun Liao, Bei Cai, Jie Chen, Junlong Zhang, Lixin Li, Binwu Ying, Chuanmin Tao, and Lanlan Wang
Infection, Genetics and Evolution, 2014, Volume 27, Page 77

Comments (0)

Please log in or register to comment.
Log in