Jump to ContentJump to Main Navigation
Show Summary Details
More options …

The International Journal of Biostatistics

Ed. by Chambaz, Antoine / Hubbard, Alan E. / van der Laan, Mark J.

2 Issues per year

IMPACT FACTOR 2017: 0.840
5-year IMPACT FACTOR: 1.000

CiteScore 2017: 0.97

SCImago Journal Rank (SJR) 2017: 1.150
Source Normalized Impact per Paper (SNIP) 2017: 1.022

Mathematical Citation Quotient (MCQ) 2016: 0.09

See all formats and pricing
More options …

Targeted Minimum Loss Based Estimation of Causal Effects of Multiple Time Point Interventions

Mark J. van der Laan / Susan Gruber
Published Online: 2012-05-05 | DOI: https://doi.org/10.1515/1557-4679.1370

We consider estimation of the effect of a multiple time point intervention on an outcome of interest, where the intervention nodes are subject to time-dependent confounding by intermediate covariates.In previous work van der Laan (2010) and Stitelman and van der Laan (2011a) developed and implemented a closed form targeted maximum likelihood estimator (TMLE) relying on the log-likelihood loss function, and demonstrated important gains relative to inverse probability of treatment weighted estimators and estimating equation based estimators. This TMLE relies on an initial estimator of the entire probability distribution of the longitudinal data structure. To enhance the finite sample performance of the TMLE of the target parameter it is of interest to select the smallest possible relevant part of the data generating distribution, which is estimated and updated by TMLE. Inspired by this goal, we develop a new closed form TMLE of an intervention specific mean outcome based on general longitudinal data structures. The target parameter is represented as an iterative sequence of conditional expectations of the outcome of interest. This collection of conditional means represents the relevant part, which is estimated and updated using the general TMLE algorithm. We also develop this new TMLE for other causal parameters, such as parameters defined by working marginal structural models. The theoretical properties of the TMLE are also practically demonstrated with a small scale simulation study.The proposed TMLE is building upon a previously proposed estimator Bang and Robins (2005) by integrating some of its key and innovative ideas into the TMLE framework.

Keywords: Asymptotic linearity of an estimator; causal effect; efficient influence curve; confounding; G-computation formula; influence curve; longitudinal data; loss function; marginal structural working model; nonparametric structural equation model; positivity assumption; randomization assumption; semiparametric statistical model; treatment regimen; targeted maximum likelihood estimation; targeted minimum loss based estimation; TMLE

About the article

Published Online: 2012-05-05

Citation Information: The International Journal of Biostatistics, Volume 8, Issue 1, ISSN (Online) 1557-4679, DOI: https://doi.org/10.1515/1557-4679.1370.

Export Citation

©2012 Walter de Gruyter GmbH & Co. KG, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Lisa Mosconi, Aneela Rahman, Ivan Diaz, Xian Wu, Olivia Scheyer, Hollie Webb Hristov, Shankar Vallabhajosula, Richard S. Isaacson, Mony J. de Leon, Roberta Diaz Brinton, and Stephen D. Ginsberg
PLOS ONE, 2018, Volume 13, Number 12, Page e0207885
Jacqueline M Torres, Kara E Rudolph, Oleg Sofrygin, M Maria Glymour, and Rebeca Wong
International Journal of Epidemiology, 2018
Noémi Kreif, Linh Tran, Richard Grieve, Bianca De Stavola, Robert C Tasker, and Maya Petersen
American Journal of Epidemiology, 2017, Volume 186, Number 12, Page 1370
Tianchen Qian, Elizabeth Colantuoni, Aaron Fisher, and Michael Rosenblum
Contemporary Clinical Trials Communications, 2017
Daniel M. Brown, Sally Picciotto, Sadie Costello, Andreas M. Neophytou, Monika A. Izano, Jacqueline M. Ferguson, and Ellen A. Eisen
Current Environmental Health Reports, 2017
Ashley I. Naimi, Mireille E. Schnitzer, Erica E. M. Moodie, and Lisa M. Bodnar
American Journal of Epidemiology, 2016, Volume 184, Number 4, Page 315
M A Gianfrancesco, L Balzer, K E Taylor, L Trupin, J Nititham, M F Seldin, A W Singer, L A Criswell, and L F Barcellos
Genes and Immunity, 2016, Volume 17, Number 6, Page 358
Mireille E. Schnitzer, Judith J. Lok, and Ronald J. Bosch
Biostatistics, 2015, Page kxv028
Samuel D. Lendle, Bruce Fireman, and Mark J. van der Laan
Journal of Clinical Epidemiology, 2013, Volume 66, Number 8, Page S91
Mireille E. Schnitzer, Erica E.M. Moodie, Mark J. van der Laan, Robert W. Platt, and Marina B. Klein
Biometrics, 2014, Volume 70, Number 1, Page 144
Susan Gruber and Mark J. van der Laan
Biometrics, 2013, Volume 69, Number 1, Page 254

Comments (0)

Please log in or register to comment.
Log in