Jump to ContentJump to Main Navigation
Show Summary Details
More options …

The International Journal of Biostatistics

Ed. by Chambaz, Antoine / Hubbard, Alan E. / van der Laan, Mark J.

IMPACT FACTOR 2018: 1.309

CiteScore 2018: 1.11

SCImago Journal Rank (SJR) 2018: 1.325
Source Normalized Impact per Paper (SNIP) 2018: 0.715

Mathematical Citation Quotient (MCQ) 2018: 0.03

See all formats and pricing
More options …

Resampling-based Methods in Single and Multiple Testing for Equality of Covariance/Correlation Matrices

Yang Yang / Victor DeGruttola
Published Online: 2012-06-22 | DOI: https://doi.org/10.1515/1557-4679.1388


Traditional resampling-based tests for homogeneity in covariance matrices across multiple groups resample residuals, that is, data centered by group means. These residuals do not share the same second moments when the null hypothesis is false, which makes them difficult to use in the setting of multiple testing. An alternative approach is to resample standardized residuals, data centered by group sample means and standardized by group sample covariance matrices. This approach, however, has been observed to inflate type I error when sample size is small or data are generated from heavy-tailed distributions. We propose to improve this approach by using robust estimation for the first and second moments. We discuss two statistics: the Bartlett statistic and a statistic based on eigen-decomposition of sample covariance matrices. Both statistics can be expressed in terms of standardized errors under the null hypothesis. These methods are extended to test homogeneity in correlation matrices. Using simulation studies, we demonstrate that the robust resampling approach provides comparable or superior performance, relative to traditional approaches, for single testing and reasonable performance for multiple testing. The proposed methods are applied to data collected in an HIV vaccine trial to investigate possible determinants, including vaccine status, vaccine-induced immune response level and viral genotype, of unusual correlation pattern between HIV viral load and CD4 count in newly infected patients.

This article offers supplementary material which is provided at the end of the article.

Keywords: resampling; covariance; correlation; multiple testing; robust test

About the article

Published Online: 2012-06-22

Citation Information: The International Journal of Biostatistics, Volume 8, Issue 1, ISSN (Online) 1557-4679, DOI: https://doi.org/10.1515/1557-4679.1388.

Export Citation

©2012 Walter de Gruyter GmbH & Co. KG, Berlin/Boston.Get Permission

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in