1.

Akaike H. Information theory and an extension of the maximum likelihood principle. In BN Petrov and F Csâki, editors. Proc. of the 2nd Int. symp. on information theory, Budapest: Akademiai Kiâdo, 1973: 267–81. Google Scholar

2.

Takeuchi K. Distributions of information statistics and criteria for adequacy of models
. Math Sci 1976;153:12–18. Google Scholar

3.

Konishi S, Kitagawa G. Generalised information criteria in model selection
. Biometrika 1996;83:875–90. CrossrefGoogle Scholar

4.

Murata N, Yoshizawa S, Amari S-I. Network information criterion-determining the number of hidden units for an artificial neural network model
. Neural Networks IEEE Trans 1994;5:865–72. CrossrefGoogle Scholar

5.

Konishi S, Kitagawa G. Information criteria and statistical modeling. New York: Springer Series in Statistics, 2008. Google Scholar

6.

Stone M. Cross-validatory choice and assessment of statistical predictions (with discussion)
. J R Stat Soc B 1974;39:111–47. Google Scholar

7.

Golub G, Heath M, Wahba G. Generalized cross-validation as a method for choosing a good ridge parameter
. Technometrics 1979;21:215–23. CrossrefGoogle Scholar

8.

Wahba G. A comparison of GCV and GML for choosing the smoothing parameter in the generalized spline smoothing problem
. Ann Stat 1985;13:1378–402. CrossrefGoogle Scholar

9.

Van Der Laan M, Dudoit S, Keles S. Asymptotic optimality of likelihood-based cross-validation
. Stat Appl Genet Mol Biol 2004;3:1036. Google Scholar

10.

Xu G, Huang JZ. Asymptotic optimality and efficient computation of the leave-subject-out cross-validation
. Ann Stat 2012;40:3003–30. Web of ScienceCrossrefGoogle Scholar

11.

Gu C, Xiang D. Cross-validating non-Gaussian data
. J Comput Graphical Stat 2001;10:581–91. CrossrefGoogle Scholar

12.

Xiang D, Wahba G. A generalized approximate cross validation for smoothing splines with non-Gaussian data
. Stat Sin 1996;6:675–92. Google Scholar

13.

Commenges D, Joly P, Gegout-Petit A, Liquet B. Choice between semi-parametric estimators of Markov and non-Markov multi-state models from generally coarsened observations
. Scand J Stat 2007;34:33–52. CrossrefGoogle Scholar

14.

O’Sullivan F. A statistical perspective on ill-posed inverse problems
. Stat Sci 1986;1:502–18. CrossrefGoogle Scholar

15.

Commenges D, Liquet B, Proust-Lima C. Choice of prognostic estimators in joint models by estimating differences of expected conditional Kullback-Leibler risks
. Biometrics 2012;68:380–7. Web of ScienceCrossrefGoogle Scholar

16.

Gneiting T, Raftery A. Strictly proper scoring rules, prediction, and estimation
. J Am Stat Assoc 2007;102:359–78. CrossrefWeb of ScienceGoogle Scholar

17.

Van der Vaart A. Asymptotic statistics. Cambridge: Cambridge University Press, 2000. Google Scholar

18.

Watanabe S. Algebraic geometry and statistical learning theory. Vol. 25. Cambridge: Cambridge University Press, 2009. Google Scholar

19.

Commenges D, Sayyareh A, Letenneur L, Guedj J, Bar-Hen A. Estimating a difference of Kullback-Leibler risks using a normalized difference of AIC
. Ann Appl Stat 2008;2:1123–42. Web of ScienceCrossrefGoogle Scholar

20.

Vuong Q. Likelihood ratio tests for model selection and non-nested hypotheses
. Econometrica 1989;57:307–33. CrossrefGoogle Scholar

21.

Cover T, Thomas J. Elements of information theory. New York: John Wiley and Sons, 1991:542. Google Scholar

22.

Hall P. On Kullback-Leibler loss and density estimation
. Ann Stat 1987;15:1491–519. CrossrefGoogle Scholar

23.

Burnham KP, Anderson DR. Model selection and multimodel inference: a practical information-theoretic approach. 2nd ed. New York: Springer-Verlag, 2002. Google Scholar

24.

Liquet B, Commenges D. Choice of estimators based on different observations: modified AIC and LCV criteria
. Scand J Stat 2011;38:268–87. CrossrefWeb of ScienceGoogle Scholar

25.

Brier GW. Verification of forecasts expressed in terms of probability
. Mon Weather Rev 1950;78:1–3. CrossrefGoogle Scholar

26.

Vaida F, Blanchard S. Conditional Akaike information for mixed-effects models
. Biometrika 2005;92:351–70. CrossrefGoogle Scholar

27.

Greven S, Kneib T. On the behaviour of marginal and conditional AIC in linear mixed models
. Biometrika 2010;97:773–89. Web of ScienceCrossrefGoogle Scholar

28.

Braun J, Held L, Ledergerber B. Predictive cross-validation for the choice of linear mixed-effects models with application to data from the Swiss HIV cohort study
. Biometrics 2012;68:53–61. Web of ScienceCrossrefGoogle Scholar

29.

Proust-Lima C, Amieva H, Jacqmin-Gadda H. Analysis of multivariate mixed longitudinal data: a flexible latent process approach
Br J Math Stat Psychol 2012;66:470–87. Web of ScienceGoogle Scholar

30.

Proust-Lima C, Philipps V, Diakite A, Liquet B. LCMM: Estimation of extended mixed models using latent classes and latent processes. R package version 1.6.6, 2014. Google Scholar

31.

Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician
. J Psychiatr Res 1975;12:189–98. CrossrefGoogle Scholar

32.

Proust C, Jacqmin-Gadda H, Taylor JM, Ganiayre J, Commenges D. A nonlinear model with latent process for cognitive evolution using multivariate longitudinal data
. Biometrics 2006;62:1014–24. CrossrefGoogle Scholar

33.

Letenneur L, Commenges D, Dartigues JF, Barberger-Gateau P. Incidence of dementia and Alzheimer’s disease in elderly community residents of South-Western France
. Int J Epidemiol 1994;23:1256–61. CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.