1. Robins JM, Hernan MA, Brumback B. Marginal structural models and causal inference in epidemiology. Epidemiology 2000;11(5):550–560. CrossrefPubMedGoogle Scholar

2. Robins J. A new approach to causal inference in mortality studies with a sustained exposure period – application to control of the healthy worker survivor effect. Math Model 1986;7(9):1393–1512. CrossrefGoogle Scholar

3. Snowden JM, Rose S, Mortimer KM. Implementation of G-computation on a simulated data set: demonstration of a causal inference technique. Am J Epidemiol 2011 Apr 1;173(7):731–738. CrossrefPubMedWeb of ScienceGoogle Scholar

4. Scharfstein DO, Rotnitzky A, Robins JM. Adjusting for nonignorable drop-out using semiparametric nonresponse models. J Am Stat Assoc 1999;94(448):1096–1120. CrossrefGoogle Scholar

5. Van der Laan MJ. Targeted maximum likelihood based causal inference: Part I. Int J Biostat 2010;6(2):1557–4679. doi:. CrossrefGoogle Scholar

6. Van der Laan MJ. Targeted maximum likelihood based causal inference: Part II. Int J Biostat 2010;6(2):1557–4679. doi:. CrossrefGoogle Scholar

7. Rosenblum M, van der Laan MJ. Targeted maximum likelihood estimation of the parameter of a marginal structural model. Int J Biostat 2010;6(2):1557–4679. doi:. CrossrefWeb of ScienceGoogle Scholar

8. Schnitzer ME, Lok JJ, Gruber S. Variable selection for confounder control, flexible modeling and collaborative targeted minimum loss-based estimation in causal inference. Int J Biostat 2016;12(1):97–115. PubMedWeb of ScienceGoogle Scholar

9. Moore KL, van der Laan MJ. Covariate adjustment in randomized trials with binary outcomes: targeted maximum likelihood estimation. Stat Med 2009;28(1):39–64. PubMedCrossrefGoogle Scholar

10. Stitelman OM, De Gruttola V, van der Laan MJ. A general implementation of tmle for longitudinal data applied to causal inference in survival analysis. Int J Biostat 2010;8(1):1557–4679. doi:. CrossrefWeb of ScienceGoogle Scholar

11. Moore KL, van der Laan MJ. Application of time-to-event methods in the assessment of safety in clinical trials 2009;U.C. Berkeley Division of Biostatistics Working Paper Series. Working Paper 248.

12. Schnitzer ME, Moodie EE, Platt RW. Targeted maximum likelihood estimation for marginal time-dependent treatment effects under density misspecification. Biostatistics 2013;14(1):1–14. CrossrefPubMedWeb of ScienceGoogle Scholar

13. van der Laan MJ, Gruber S. Targeted minimum loss based estimation of causal effects of multiple time point interventions. Int J Biostat 2012;8(1):1557–4679. doi:. CrossrefWeb of ScienceGoogle Scholar

14. Petersen M, Schwab J, Gruber S, Blaser N, Schomaker M, van der Laan M. Targeted maximum likelihood estimation for dynamic and static longitudinal marginal structural working models. J Causal Inference 2014 Sep 1;2(2):147–185. PubMedGoogle Scholar

15. Schnitzer ME, Laan MJVD, Moodie EEM, Platt RW. Effect of breastfeeding on gastrointestinal infection in infants: a targeted maximum likelihood approach for clustered longitudinal data. Ann Appl Stat 2014 Jun;8(2):703–725. Web of ScienceCrossrefPubMedGoogle Scholar

16. Porter KE. The relative performance of targeted maximum likelihood estimators under violations of the positivity assumption 2011;Available at http://escholarship.org/uc/item/3hp4r33n.pdf. Google Scholar

17. Brookhart MA, Schneeweiss S, Rothman KJ, Glynn RJ, Avorn J, Stürmer T. Variable selection for propensity score models. Am J Epidemiol 2006 Jun 15;163(12):1149–1156. CrossrefWeb of SciencePubMedGoogle Scholar

18. Austin PC, Mamdani MM. A comparison of propensity score methods: a case-study estimating the effectiveness of post-AMI statin use. Stat Med 2006 Jun 30;25(12):2084–2106. CrossrefPubMedGoogle Scholar

19. Lefebvre G, Delaney JAC, Platt RW. Impact of mis-specification of the treatment model on estimates from a marginal structural model. Stat Med 2008 Aug 15;27(18):3629–3642. CrossrefWeb of SciencePubMedGoogle Scholar

20. Gruber S, van der Laan MJ. tmle: an R Package for Targeted Maximum Likelihood Estimation. J Stat Softw 2011;51(13):1–35. Google Scholar

21. Schwab JL, Lendle S, Petersen M, van der Laan MJ, Gruber S. LTMLE: longitudinal targeted maximum likelihood estimation, 2013 2014;Available at http://cran.r-project.org/web/packages/ltmle/index.html. Google Scholar

22. Neugebauer R, van der Laan M. Why prefer double robust estimators in causal inference? J Stat Plan Inference 2005;129(1):405–426. CrossrefGoogle Scholar

23. Ertefaie A, Stephens DA. Comparing approaches to causal inference for longitudinal data: Inverse probability weighting versus propensity scores. Int J Biostat 2010;6(2):1557–4679. doi:. CrossrefWeb of ScienceGoogle Scholar

24. Gruber S, van der Laan MJ. A targeted maximum likelihood estimator of a causal effect on a bounded continuous outcome. Int J Biostat 2010;6(1):1557–4679. doi:. CrossrefWeb of ScienceGoogle Scholar

25. Porter KE, Gruber S, van der Laan MJ, Sekhon JS. The relative performance of targeted maximum likelihood estimators. Int J Biostat 2011;7(1):1–34. Web of ScienceCrossrefGoogle Scholar

26. Lendle SD, Fireman B, Laan MJVD. Targeted maximum likelihood estimation in safety analysis. J Clin Epidemiol 2013 Aug 1;66(8):S91–98. CrossrefPubMedWeb of ScienceGoogle Scholar

27. Brown DM, Petersen M, Costello S. Occupational exposure to PM2.5 and incidence of ischemic heart disease: longitudinal targeted minimum loss-based estimation. Epidemiology 2015;26(6):806–814. Web of SciencePubMedCrossrefGoogle Scholar

28. Van Der Laan MJ, Gruber S. Collaborative double robust targeted maximum likelihood estimation. Int J Biostat 2010;6(1):1557–4679. doi:. CrossrefWeb of ScienceGoogle Scholar

29. Gruber S, van der Laan MJ. An application of collaborative targeted maximum likelihood estimation in causal inference and genomics. Int J Biostat 2010;6(1):1557–4679. doi:. CrossrefWeb of ScienceGoogle Scholar

30. Franklin JM, Schneeweiss S, Polinski JM, Rassen JA. Plasmode simulation for the evaluation of pharmacoepidemiologic methods in complex healthcare databases. Comput Stat Data Anal 2014 Apr;72:219–226. CrossrefPubMedWeb of ScienceGoogle Scholar

31. Greenland S, Pearl J, Robins JM. Causal diagrams for epidemiologic research. Epidemiology 1999;10(1):37–48. CrossrefPubMedGoogle Scholar

32. Hernán MA, Robins JM. Causal Inference. Boca Raton: Chapman & Hall/CRC, 2016, forthcoming. Google Scholar

33. Pang M, Kaufman JS, Platt RW. Studying noncollapsibility of the odds ratio with marginal structural and logistic regression models. Stat Methods Med Res 2013;0962280213505804. Web of SciencePubMed

34. Van Der Laan MJ, Polley EC, Hubbard AE. Super learner. Stat Appl Genet Mol Biol 2007;6(1):1544–6115. doi:. CrossrefWeb of ScienceGoogle Scholar

35. Pang M, Schuster T, Filion KB, Eberg M, Platt RW. Targeted Maximum Likelihood Estimation for Pharmacoepidemiologic Research. Epidemiology 2016 7;27(4):570–577. doi:.CrossrefWeb of SciencePubMedGoogle Scholar

36. Schneeweiss S, Rassen JA, Glynn RJ, Avorn J, Mogun H, Brookhart MA. High-dimensional propensity score adjustment in studies of treatment effects using health care claims data. Epidemiology 2009;20(4):512–522. CrossrefWeb of SciencePubMedGoogle Scholar

37. Stürmer T, Schneeweiss S, Brookhart MA, Rothman KJ, Avorn J, Glynn RJ. Analytic strategies to adjust confounding using exposure propensity scores and disease risk scores: nonsteroidal antiinflammatory drugs and short-term mortality in the elderly. Am J Epidemiol 2005;161(9):891–898. PubMedCrossrefGoogle Scholar

38. Rassen JA, Schneeweiss S. Using high-dimensional propensity scores to automate confounding control in a distributed medical product safety surveillance system. Pharmacoepidemiol Drug Saf 2012;21(S1):41–49. Web of ScienceCrossrefGoogle Scholar

39. Rassen JA, Glynn RJ, Brookhart MA, Schneeweiss S. Covariate selection in high-dimensional propensity score analyses of treatment effects in small samples. Am J Epidemiol 2011;173(12):1404–1413. CrossrefWeb of SciencePubMedGoogle Scholar

40. Rassen JA, Avorn J, Schneeweiss S. Multivariate-adjusted pharmacoepidemiologic analyses of confidential information pooled from multiple health care utilization databases. Pharmacoepidemiol Drug Saf 2010;19(8):848–857. Web of ScienceCrossrefPubMedGoogle Scholar

41. Rassen JA, Doherty M, Huang W, Schneeweiss S. Pharmacoepidemiology toolbox Available at: . Boston MAhttp://www.hdpharmacoepi.org.

42. Sinisi SE, van der Laan MJ. Loss-based cross-validated deletion/substitution/addition algorithms in estimation 2004;Available at: http://biostats.bepress.com/ucbbiostat/paper103/. Google Scholar

43. Sinisi SE, van der Laan MJ. Deletion/substitution/addition algorithm in learning with applications in genomics. Stat Appl Genet Mol Biol 2004;3(1):1069. Google Scholar

44. Sinisi SE, Polley EC, Petersen ML, Rhee S-Y, van der Laan MJ. Super learning: an application to the prediction of HIV-1 drug resistance. Stat Appl Genet Mol Biol 2007;6(1):7. Google Scholar

45. Zheng W, Laan MVD. Asymptotic theory for cross-validated targeted maximum likelihood estimation 2010;Available at: http://works.bepress.com/wenjing-zheng/22/. Google Scholar

46. Petersen ML, Porter KE, Gruber S, Wang Y, van der Laan MJ. Diagnosing and responding to violations in the positivity assumption. Stat Methods Med Res 2010;0962280210386207. Web of SciencePubMed

47. Cole SR, Hernán MA. Constructing inverse probability weights for marginal structural models. Am J Epidemiol 2008 Sep 15;168(6):656–664. CrossrefPubMedWeb of ScienceGoogle Scholar

48. Xiao Y, Moodie EEM, Abrahamowicz M. Comparison of approaches to weight truncation for marginal structural cox models. Epidemiol Methods 2013 Jan 8;2(1):1–20. CrossrefGoogle Scholar

49. Bembom O, Laan MVD. Data-adaptive selection of the truncation level for Inverse-Probability-of-Treatment-Weighted estimators 2008;U.C. Berkeley Division of Biostatistics Working Paper Series. Working Paper 230. Available at: . http://biostats.bepress.com/ucbbiostat/paper230.

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.