1.

Kaur S, Archer KJ, Devi MG, Kriplani A, Strauss JF, Singh R. Differential gene expression in granulosa cells from polycystic ovary syndrome patients with and without insulin resistance: identification of susceptibility gene sets through network analysis. J Clin Endocrinol Metab 2012;97:E2016–E2021. PubMedGoogle Scholar

2.

Kuster DW, Merkus D, Kremer A, van IJcken WF, de Beer VJ, Verhoeven AJ, et al. Left ventricular remodeling in swine after myocardial infarction: a transcriptional genomics approach. Basic Res Cardiol 2011;106:1269–1281. Google Scholar

3.

Mokry M, Hatzis P, Schuijers J, Lansu N, Ruzius FP, Clevers H, et al. Integrated genome-wide analysis of transcription factor occupancy, RNA polymerase II binding and steady-state RNA levels identify differentially regulated functional gene classes. Nucleic Acids Res 2012;40:148–158. CrossrefPubMedGoogle Scholar

4.

Richard AC, Lyons PA, Peters JE, Biasci D, Flint SM, Lee JC, et al. 2014; Comparison of gene expression microarray data with count-based RNA measurements informs microarray interpretation. BMC Genomics 15:649–659. PubMedCrossrefGoogle Scholar

5.

Schurch NJ, Schofield P, Gierliński M, Cole C, Sherstnev A, Singh V, et al. How many biological replicates are needed in an RNA-seq experiment and which differential expression tool should you use. RNA 2016;22:839–851. CrossrefGoogle Scholar

6.

Ledoit O, Wolf M. Improved estimation of the covariance matrix of stock returns with an application to portfolio selection. J Empirical Finance 2003;10:603–621. CrossrefGoogle Scholar

7.

Fisher TJ, Improved Sun X. Stein-type shrinkage estimators for the high-dimensional multivariate normal covariance matrix. Comput Stat Data Anal 2011;55:1909–1918. CrossrefGoogle Scholar

8.

Bickel PJ, Levina E. Covariance regularization by thresholding. Ann Stat 2008;36:2577–2604. CrossrefGoogle Scholar

9.

Cai T, Yuan M. Adaptive covariance matrix estimation through block thresholding. Ann Stat 2012;40:2014–2042. CrossrefGoogle Scholar

10.

Rothman AJ. Positive definite estimators of large covariance matrices. Biometrika 2012;99:733–740. CrossrefGoogle Scholar

11.

Cai T, Ren Z, Zhou H. Optimal rates of convergence for estimating Toeplitz covariance matrices. Probab Theo Relat Fields 2013;156:101–143. CrossrefGoogle Scholar

12.

Chen X, Xu M, Wu WB. Covariance and precision matrix estimation for high-dimensional time series. Ann Stat 2013;41:2994–3021. CrossrefGoogle Scholar

13.

Basu S, Michailidis G. Regularized estimation in sparse high-dimensional time series models. Ann Stat 2015;43:1535–1567. CrossrefGoogle Scholar

14.

Tong T, Wang C, Wang Y. Estimation of variances and covariances for high-dimensional data: a selective review. WIREs Comput Stat 2014;6:255–264. CrossrefGoogle Scholar

15.

Cai T, Ren Z, Zhou H. Estimating structured high-dimensional covariance and precision matrices: optimal rates and adaptive estimation. Electron J Stat 2016;10:1–59. CrossrefGoogle Scholar

16.

Fan J, Liao Y, Liu H. An overview of the estimation of large covariance and precision matrices. Econometrics J 2016;19:C1–C32. Google Scholar

17.

Wilks SS. Certain generalizations in the analysis of variance. Biometrika 1932;24:471–494. CrossrefGoogle Scholar

18.

Wilks S. Multidimensional statistical scatter. In: Andreson TW, editor. Collected papers: contributions to mathematical statistics. New York: John Wiley & Sons, 1967:597–614. Google Scholar

19.

Yuan M, Lin Y. Model selection and estimation in the Gaussian graphical model. Biometrika 2007;94:19–35. CrossrefGoogle Scholar

20.

Friedman J, Hastie T, Tibshirani R. Sparse inverse covariance estimation with the graphical lasso. Biostatistics 2008;9:432–441. PubMedCrossrefGoogle Scholar

21.

Banerjee O, El Ghaoui L, d’Aspremont A. Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data. J Mach Learn Res 2008;9:485–516. Google Scholar

22.

Witten DM, Tibshirani R. Covariance-regularized regression and classification for high dimensional problems. J R Stat Soc Ser B 2009;71:615–636. CrossrefGoogle Scholar

23.

Ravikumar P, Wainwright MJ, Raskutti G, Yu B. High-dimensional covariance estimation by minimizing ℓ_{1}-penalized log-determinant divergence. Electron J Stat 2011;5:935–980. CrossrefGoogle Scholar

24.

Yin J, Li H. Adjusting for high-dimensional covariates in sparse precision matrix estimation by ℓ_{1}-penalization. J Multivariate Anal 2013;116:365–381. CrossrefGoogle Scholar

25.

Bishop CM. Pattern recognition and machine learning. New York: Springer, 2006. Google Scholar

26.

Hastie T, Tibshirani R, Friedman J. The elements of statistical learning. New York: Springer, 2002. Google Scholar

27.

Rousseeuw PJ. Multivariate estimation with high breakdown point. Math Stat Appl 1985;8:283–297. Google Scholar

28.

Rousseeuw PJ, Driessen KV. A fast algorithm for the minimum covariance determinant estimator. Technometrics 1999;41:212–223. CrossrefGoogle Scholar

29.

Ro K, Zou C, Wang Z, Yin G. Outlier detection for high-dimensional data. Biometrika 2015;102:589–599. CrossrefGoogle Scholar

30.

Boudt K, Rousseeuw P, Vanduffel S, Verdonck T. The minimum regularized covariance determinant estimator, 2017. arXiv preprint arXiv:1701.07086. Google Scholar

31.

Anderson TW. An introduction to multivariate statistical analysis. New York: Wiley, 1984. Google Scholar

32.

Tsai CA, Chen JJ. Multivariate analysis of variance test for gene set analysis. Bioinformatics 2009;25:897–903. PubMedCrossrefGoogle Scholar

33.

Schäfer J, Strimmer K. A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Stat Appl Genet Mol. Biol. 2005;4:32. Google Scholar

34.

Ullah I, Jones B. Regularised MANONA for high-dimensional data. Aust N Z J Stat 2015;57:377–389. CrossrefGoogle Scholar

35.

Chiu TY, Leonard T, Tsui KW. The matrix-logarithmic covariance model. J Am Stat Assoc 1996;91:198–210. CrossrefGoogle Scholar

36.

Cai T, Liang T, Zhou H. Law of log determinant of sample covariance matrix and optimal estimation of differential entropy for high-dimensional Gaussian distributions. J Multivariate Anal 2015;137:161–172. CrossrefGoogle Scholar

37.

Dudoit S, Fridlyand J, Speed TP. Comparison of discrimination methods for the classification of tumors using gene expression data. J Am Stat Assoc 2002;97:77–87. CrossrefGoogle Scholar

38.

Bickel PJ, Levina E. Some theory of Fisher’s linear discriminant function, ‘naive Bayes’, and some alternatives when there are many more variables than observations. Bernoulli 2004;10:989–1010. CrossrefGoogle Scholar

39.

Baldi P, Long AD. A Bayesian framework for the analysis of microarray expression data: regularized *t*-test and statistical inferences of gene changes. Bioinformatics 2001;17:509–519. CrossrefPubMedGoogle Scholar

40.

Wright GW, Simon RM. A random variance model for detection of differential gene expression in small microarray experiments. Bioinformatics 2003;19:2448–2455. PubMedCrossrefGoogle Scholar

41.

Cui X, Hwang JT, Qiu J, Blades NJ, Churchill GA. Improved statistical tests for differential gene expression by shrinking variance components estimates. Biostatistics 2005;6:59–75. CrossrefPubMedGoogle Scholar

42.

Tong T, Wang Y. Optimal shrinkage estimation of variances with applications to microarray data analysis. J Am Stat Assoc 2007;102:113–122. CrossrefGoogle Scholar

43.

Tong T, Jang H, Wang Y. James-Stein type estimators of variances. J Multivariate Anal 2012;107:232–243. CrossrefGoogle Scholar

44.

Warton DI. Penalized normal likelihood and ridge regularization of correlation and covariance matrices. J Am Stat Assoc 2008;103:340–349. CrossrefGoogle Scholar

45.

Warton DI. Regularized sandwich estimators for analysis of high-dimensional data using generalized estimating equations. Biometrics 2011;67:116–123. PubMedCrossrefGoogle Scholar

46.

Karoui, NE. 2008; Operator norm consistent estimation of large-dimensional sparse covariance matrices. Ann Stat 36:2717–2756. CrossrefGoogle Scholar

47.

Rothman AJ, Levina E, Zhu J. Generalized thresholding of large covariance matrices. J Am Stat Assoc 2009;104:177–186. CrossrefGoogle Scholar

48.

Lam C, Fan J. Sparsistency and rates of convergence in large covariance matrix estimation. Ann Stat 2009;37:42–54. Google Scholar

49.

Cai T, Liu W. Adaptive thresholding for sparse covariance matrix estimation. J Am Stat Assoc 2011;106:672–684. CrossrefGoogle Scholar

50.

Cai T, Zhou H. Optimal rates of convergence for sparse covariance matrix estimation. Ann Stat 2012;40:2389–2420. CrossrefGoogle Scholar

51.

Mitra R, Zhang C. Multivariate analysis of nonparametric estimates of large correlation matrices, 2014. arXiv preprint arXiv:1403.6195.

52.

Wang T, Berthet Q, Samworth RJ. Statistical and computational trade-offs in estimation of sparse principal components. Ann Stat 2016;44:1896–1930. CrossrefGoogle Scholar

53.

Barry RP, Pace RK. Monte carlo estimates of the log determinant of large sparse matrices. Linear Algebra Appl 1999;289:41–54. CrossrefGoogle Scholar

54.

Fan J, Liao Y, Mincheva M. Large covariance estimation by thresholding principal orthogonal complements (with discussion). J R. Stat Soc: Ser B 2013;75:603–680. CrossrefGoogle Scholar

55.

Guo Y, Hastie T, Tibshirani R. Regularized linear discriminant analysis and its application in microarrays. Biostatistics 2007;8:86–100. CrossrefPubMedGoogle Scholar

56.

Pang H, Tong T, Zhao H. Shrinkage-based diagonal discriminant analysis and its applications in high-dimensional data. Biometrics 2009;65:1021–1029. PubMedCrossrefGoogle Scholar

57.

Zhan F, Barlogie B, Arzoumanian V, Huang Y, Williams DR, Hollmig K, et al. Gene-expression signature of benign monoclonal gammopathy evident in multiple myeloma is linked to good prognosis. Blood 2007;109:1692–1700. CrossrefPubMedGoogle Scholar

58.

Tong T, Feng Z, Hilton JS, Zhao H. Estimating the proportion of true null hypotheses using the pattern of observed *p*-values. J Appl Stat 2013;40:1949–1964. CrossrefPubMedGoogle Scholar

59.

Fan J, Liao Y, Mincheva M. High dimensional covariance matrix estimation in approximate factor models. Ann Stat 2011;39:3320–3356. PubMedCrossrefGoogle Scholar

60.

Boutsidis C, Drineas P, Kambadur P, Kontopoulou E-M, Zouzias A. A randomized algorithm for approximating the log determinant of a symmetric positive definite matrix. Linear Algebra and its Applications 2017, in press. Google Scholar

61.

Fitzsimons J, Cutajar K, Osborne M, Roberts S, Filippone M. Bayesian inference of log determinants, 2017a. arXiv preprint arXiv:1704.01445. Google Scholar

62.

Fitzsimons J, Granziol D, Cutajar K, Osborne M, Filippone M, Roberts S. Entropic trace estimates for log determinants, 2017b. arXiv preprint arXiv:1704.07223. Google Scholar

63.

Han I, Malioutov D, Shin J. Large-scale log-determinant computation through stochastic Chebyshev expansions. In: Proceedings of the 32nd International Conference on Machine Learning, 2015:908–917. Google Scholar

64.

Peng W, Wang H. Large-scale log-determinant computation via weighted l2 polynomial approximation with prior distribution of eigenvalues. In:International conference on high performance computing and applications. Springer, 2015:120–125. Google Scholar

65.

Zhang Y, Leithead WE. Approximate implementation of the logarithm of the matrix determinant in Gaussian process regression. J Stat Comput Simul 2007;77:329–348. CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.