1. Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for causal effects. Biometrika 1983;70:41–55. CrossrefGoogle Scholar

2. Robins JM, Hernán MA, Brumback B. Marginal structural models and causal inference in epidemiology. Epidemiology 2000;11:550–60. CrossrefPubMedGoogle Scholar

3. Robins JM, Rotnitzky A, P ZL. Analysis of semiparametric regression models for repeated outcomes under the presence of missing data. J Am Stat Assoc 1995;90:106–21. CrossrefGoogle Scholar

4. Luo Z, Gardiner JC, Bradley CJ. Applying propensity score methods in medical research: pitfalls and prospects. Med Care Res Rev 2010;67:528–54. PubMedCrossrefGoogle Scholar

5. Thoemmes FJ, Kim ES. A systematic review of propensity score methods in the social sciences. Multivar Behav Res 2011;46:90–118. CrossrefGoogle Scholar

6. Vansteelandt S, Bekaert M, Claeskens G. On model selection and model misspecification in causal inference. Stat Methods Med Res 2012;21:7–30. CrossrefPubMedGoogle Scholar

7. Hernán MA, Hernández-Diaz S, Werler MM, Mitchell AA. Causal knowledge as a prerequisite for confounding evaluation: an application to birth defects epidemiology. Am J Epidemiol 2002;155:176–84. CrossrefPubMedGoogle Scholar

8. Robins JM. Data, design, and background knowledge in etiologic inference. Epidemiology 2001;11:313–20. Google Scholar

9. Rubin DB. Should observational studies be deigned to allow lack of balance in covariate distributions across treatment groups? Stat Med 2009;28:1420–3. CrossrefGoogle Scholar

10. Schneeweiss S, Rassen JA, Glynn RJ, Avorn J, Mogun H, Brookhart MA. High-dimensional propensity score adjustment in studies of treatment effects using health care claims data. Epidemiology 2009;20:512–22. CrossrefPubMedGoogle Scholar

11. VanderWeele TJ, Shpitser I. A new criterion for confounder selection. Biometrics 2011;67:1406–13. CrossrefPubMedGoogle Scholar

12. Judkins DR, Morganstein D, Zador P, Piesse A, Barrett B, Mukhopadhyay P. Variable selection and raking in propensity scoring. Stat Med 2007;26:1022–33. CrossrefPubMedGoogle Scholar

13. Li L, Evans E, Hser Y. A marginal structural modeling approach to assess the cumulative effect of drug treatment on later drug use abstinence. J Drug Issues 2010;40:221–40. CrossrefPubMedGoogle Scholar

14. Austin PC, Tu JV, Ho JE, Levy D, Lee DS. Using methods from the data-mining and machine-learning literature for disease classification and prediction: a case study examining classification of heart failure subtypes. J Clin Epidemiol 2013;66:398–407. CrossrefPubMedGoogle Scholar

15. Lee BK, Lessler J, Stuart EA. Improving propensity score weighting using machine learning. Stat Med 2009;29:337–46.Google Scholar

16. Setoguchi S, Schneeweiss S, Brookhart MA, Glynn RJ, Cook EF. Evaluating uses of data mining techniques in propensity score estimation: a simulation study. Pharmacoepidem Drug Safety 2008;17:546–55.CrossrefGoogle Scholar

17. Westreich D, Lessler J, Funk MJ. Propensity score estimation: neural networks, support vect or machines, decision trees (cart), and meta-classifiers as alternatives to logistic regression. J Clin Epidemiol 2010;63:826–33. CrossrefGoogle Scholar

18. Rotnitzky A, Robins JM. Semi-parametric estimation of models for means and covariances in the presence of missing data. Scand J Stat 1995a;22:323–33. Google Scholar

19. van der Laan MJ, Rubin D. Targeted maximum likelihood learning. Int J Biostat 2006;2:Article 11. Google Scholar

20. van der Laan MJ, Rose S. Targeted learning: causal inference for observational and experimental data. New York, NY, USA: Springer Series in Statistics, Springer, 2011. Google Scholar

21. Zheng W, van der Laan MJ. Targeted learning: causal inference for observational and experimental data, springer series in statistics, springer, chapter asymptotic theory for cross-validated targeted maximum likelihood estimation, 2011.

22. Polley EC, Van der Laan MJ Super learner in prediction U.C. Berkeley division of biostatistics working paper series, 2010.

23. Porter KE, Gruber S, van der Laan MJ, Sekhon JS. The relative performance of targeted maximum likelihood estimators. Int J Biostat 2011;7:1–34. CrossrefGoogle Scholar

24. Schnitzer ME, van der Laan MJ, Moodie EEM, Platt RW. Effect of breastfeeding on gastrointestinal infection in infants: a targeted maximum likelihood approach for clustered longitudinal data. Ann Appl Stat 2014. in press. PubMed

25. Hahn J. On the role of the propensity score in efficient semiparametric estimation of average treatment effects. Econometrica 1998;66:315–31. CrossrefGoogle Scholar

26. Rotnitzky A, Li L, Li X. A note on overadjustment in inverse probability weighted estimation. Biometrika 2010;97:997–1001. PubMedCrossrefGoogle Scholar

27. van der Laan MJ, Gruber S. Collaborative double robust targeted maximum likelihood estimation. Int J Biostat 2010;6:Article 17. Google Scholar

28. Gruber S, van der Laan MJ. An application of collaborative targeted maximum likelihood estimation in causal inference and genomics. Int J Biostat 2010a;6:Article 18. Google Scholar

29. De Luna X, Waernbaum I, Richardson TS. Covariate selection for the nonparametric estimation of an average treatment effect. Biometrika 2011;98:861–75. CrossrefGoogle Scholar

30. Persson E, Häggström J, Waernbaum I, de Luna X. Data-driven algorithms for dimension reduction in causal inference: analyzing the effect of school achievements on acute complications of type 1 diabetes mellitus arXiv, 2013.

31. Brookhart MA, van der Laan MJ. A semiparametric model selection criterion with applications to the marginal structural model. Comput Stat Data Anal 2006;50:475–98. CrossrefGoogle Scholar

32. Crainiceanu CM, Dominici F, Parmigiani G. Adjustment uncertainty in effect estimation. Biometrika 2008;95:635–51. CrossrefGoogle Scholar

33. Wang C, Parmigiani G, Dominici F. Bayesian effect estimation accounting for adjustment uncertainty. Biometrics 2012;68:661–71. CrossrefPubMedGoogle Scholar

34. Cefalu M, Dominici F, Parmigiani G. A model averaged double robust estimator, Technical report, Department of Biostatistics, Harvard School of Public Health, 2014.

35. Rubin DB. Estimating causal effects of treatments in randomized and nonrandomized studies. J Educ Psychol 1974;66:688–701. CrossrefGoogle Scholar

36. Pearl J. Causality: models, reasoning, and inference, 2nd ed. New York, NY, USA: Cambridge University Press, 2009a. Google Scholar

37. Greenland S, Pearl J, Robins JM. Causal diagrams for epidemiologic research. Epidemiology 1999;10:37–48. CrossrefPubMedGoogle Scholar

38. Rubin DB. Randomization analysis of experimental data: the fisher randomization test comment. J Am Stat Assoc 1980;75:591–3. CrossrefGoogle Scholar

39. Holland PW. Statistics and causal inference. J Am Stat Assoc 1986;81:945–60. CrossrefGoogle Scholar

40. Bembom O, Fessel JF, Shafer RW, van der Laan MJ. Data-adaptive selection of the adjustment set in variable importance estimation U.C. Berkeley Division of Biostatistics Working Paper Series, 2008.

41. Westreich D, Cole SR. Invited commentary: positivity in practice. Am J Epidemiol 2010;171:674–7. CrossrefPubMedGoogle Scholar

42. Brookhart MA, Schneeweiss S, Rothman KJ, Glynn RJ, Avorn J, Stürmer T. Variable selection for propensity score models. Am J Epidemiol 2006;163:1149–56. CrossrefPubMedGoogle Scholar

43. Lefebvre G, Delaney JAC, Platt RW. Impact of mis-specification of the treatment model on estimates from a marginal structural model. Stat Med 2008;27:3629–42. PubMedCrossrefGoogle Scholar

44. Rotnitzky A, Robins JM. Semiparametric regression estimation in the presence of dependent censoring. Biometrika 1995b;82:805–20. CrossrefGoogle Scholar

45. Pearl J. On a class of bias-amplifying covariates that endanger effect estimates, Technical report, University of California, Los Angeles, 2009b.

46. Wooldridge J. Should instrumental variables be used as matching variables? Technical report, Michigan State University, MI, 2009.

47. Shrier I, Platt RW, Steele RJ. Re: variable selection for propensity score models. Am J Epidemiol 2007;166:238–9. CrossrefPubMedGoogle Scholar

48. van der Laan MJ, Robins JM. Unified methods for censored longitudinal data and causality. New York: Springer Series in Statistics, Springer Verlag, 2003. Google Scholar

49. Robins JM. A new approach to causal inference in mortality studies with a sustained exposure period – application to control of the healthy worker survivor effect. Math Modell 1986;7:1393–512. CrossrefGoogle Scholar

50. Hampel FR. The influence curve and its role in robust estimation. J Am Stat Assoc 1974;69:383–93. CrossrefGoogle Scholar

51. Tsiatis AA. Semiparametric theory and missing data. Springer: Springer Series in Statistics, 2006. Google Scholar

52. Gruber S, van der Laan MJ. A targeted maximum likelihood estimator of a causal effect on a bounded continuous outcome. Int J Biostat 2010b;6:Article 26. Google Scholar

53. Gruber S, van der Laan MJ. Tmle: an R package for targeted maximum likelihood estimation. J Stat Soft 2012;51:1–35. Available at: http://www.jstatsoft.org/v51/i13/. Google Scholar

54. Gruber S, van der Laan MJ. C-Tmle of an Additive Point Treatment Effect. In MJ van der Laan and S. Rose, editors. Targeted learning: causal inference for observational and experimental data. Springer Series in Statistics, 2011. Google Scholar

55. van der Laan MJ. Targeted estimation of nuisance parameters to obtain valid statistical inference. Int J Biostat 2014;10:29–57. PubMedGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.