Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao

12 Issues per year


IMPACT FACTOR 2016: 0.623
5-year IMPACT FACTOR: 0.761

CiteScore 2017: 0.86

SCImago Journal Rank (SJR) 2017: 0.306
Source Normalized Impact per Paper (SNIP) 2017: 0.503

Online
ISSN
1542-6580
See all formats and pricing
More options …

Dodecane Decomposition in a Radio-Frequency (RF) Plasma Reactor

Laura Merlo-Sosa / Gervais Soucy
Published Online: 2005-04-20 | DOI: https://doi.org/10.2202/1542-6580.1170

The research outlined here includes a study of the production of carbon black (CB) in an inductive plasma reactor, using dodecane (C12H26) as the starting material. Thermodynamic and kinetic studies were carried out to predict the species concentrations likely to be obtained in the pyrolysis process at plasma temperatures. A thorough statistical experimental design was undertaken to investigate the influence of the different operational conditions such as: the feed rates of dodecane, the reactor pressure, the plate power applied to the plasma torch and the composition of the plasma gas, on the production of carbon black and gaseous acetylene-like compounds. Thermodynamic and kinetic models were compared with experimental results, a kinetic reaction model best representing the experimental results. Morphological analysis of the solid product using Transmission Electron Microscopy (TEM) indicates that a high plasma temperature is the most important factor affecting the final morphology of the carbon black formed during the reaction. Carbon black with average particle size of 10-30 nm and specific surface of 130 m2/g was obtained. Morphological analyses also demonstrated the presence of new structures ranging from carbon black to fullerenes and including certain “graphitized” carbon molecules.

Keywords: Carbon Black; Thermal Plasma; Plasma Reactor; Dodecane

About the article

Published Online: 2005-04-20


Citation Information: International Journal of Chemical Reactor Engineering, Volume 3, Issue 1, ISSN (Online) 1542-6580, DOI: https://doi.org/10.2202/1542-6580.1170.

Export Citation

©2011 Walter de Gruyter GmbH & Co. KG, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in