Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao

12 Issues per year

IMPACT FACTOR 2017: 0.881
5-year IMPACT FACTOR: 0.908

CiteScore 2017: 0.86

SCImago Journal Rank (SJR) 2017: 0.306
Source Normalized Impact per Paper (SNIP) 2017: 0.503

See all formats and pricing
More options …
Volume 3, Issue 1


Volume 9 (2011)

Volume 8 (2010)

Volume 7 (2009)

Volume 6 (2008)

Volume 5 (2007)

Volume 4 (2006)

Volume 3 (2005)

Volume 2 (2004)

Volume 1 (2002)

Towards Bifurcation Detection in Kinetic Monte Carlo Simulations: Robust Identification with Artificial Neural Networks and Nonlinear Kalman Filters

Carlos González-Figueredo / Ramiro Rico-Martínez
Published Online: 2006-02-13 | DOI: https://doi.org/10.2202/1542-6580.1253

The efficient characterization of the nonlinear dynamical response of kinetic molecular simulations is discussed. Following ideas originally proposed by Kevrekidis et al. [1, 2], one can empower molecular simulations as model-free equations and use them as a reference to perform bifurcation detection. Such a procedure requires the use of trajectories from the molecular simulation to generate low-order models (e.g. polynomial) that allow one to infer the location of a bifurcation. If such identification step can be performed robustly, a feedback control policy that drives the molecular simulation to the bifurcation point can be constructed. In previous work, the identification of the low-order model has been singled out as the key element in handling noise trajectories, such as those generated by low-resolution molecular simulations. Here, a procedure motivated by the use of Kalman Filter observers is proposed as a means to give robustness to the identification procedure. The potential of the technique to characterize the dynamical response of kinetic molecular simulations is illustrated using examples related to the CO oxidation over a catalytic surface.

Keywords: bifurcation; Monte Carlo; identification

About the article

Published Online: 2006-02-13

Citation Information: International Journal of Chemical Reactor Engineering, Volume 3, Issue 1, ISSN (Online) 1542-6580, DOI: https://doi.org/10.2202/1542-6580.1253.

Export Citation

©2011 Walter de Gruyter GmbH & Co. KG, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

E. Ramírez-Álvarez, M. Calderón Ramírez, R. Rico-Martínez, C. González-Figueredo, and P. Parmananda
The Journal of Physical Chemistry A, 2013, Volume 117, Number 3, Page 535

Comments (0)

Please log in or register to comment.
Log in