Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao

12 Issues per year


IMPACT FACTOR 2017: 0.881
5-year IMPACT FACTOR: 0.908

CiteScore 2017: 0.86

SCImago Journal Rank (SJR) 2017: 0.306
Source Normalized Impact per Paper (SNIP) 2017: 0.503

Online
ISSN
1542-6580
See all formats and pricing
More options …
Volume 6, Issue 1

Issues

Volume 9 (2011)

Volume 8 (2010)

Volume 7 (2009)

Volume 6 (2008)

Volume 5 (2007)

Volume 4 (2006)

Volume 3 (2005)

Volume 2 (2004)

Volume 1 (2002)

Instabilities and Transition to Chaos in Flows between Concentric Cylinders

Aomar Ait Aider
Published Online: 2008-10-28 | DOI: https://doi.org/10.2202/1542-6580.1772

How does turbulence rise? For a long time, a century, the Taylor-Couette system was a paradigm for the researchers who tried to get answers to this question. Fascinating structures and patterns observed in the flow have attracted the interest of many researchers, both experimentalists and theorists. During the last century, many works were done on the closed Taylor-Couette systems. At the end of the seventies, after thousands of contributions, experiments performed in the Taylor-Couette system confirmed a theoretical analysis which concluded that a finite number of instabilities, two or three, are sufficient to lead to chaos or weak turbulence. Our own experiments were conducted at that time on a Taylor-Couette system with a moderate aspect ratio. They were analyzed from visual observation and fine local measurement with an electrochemical method. Scalar time series and data pointed out the frequencies characteristic of the flow. Many geometrical effects are considered by researchers. When the gap is horizontal and not completely filled, the flow obtained is called Taylor-Dean flow. We obtained similar flow in an azimuthally open Taylor-Couette system where a combination of the inner cylinder rotation and external fluid pumping, the Dean flow, produces the so called Taylor-Dean flow. Measurements and analysis were carried out by visualization and Laser Doppler Velocimetry. In addition to the experimental approach, we used Computational Fluid Dynamics analysis to complete the flow study. Numerical and experimental investigations reveal a class of instabilities of the Taylor-Dean flow not previously observed in the Taylor-Couette flow due to the cylinder rotation neither in the Dean flow due to the external pumping fluid.

Keywords: flow; instabilities; shear wall; Taylor-Couette-Dean fluency

About the article

Published Online: 2008-10-28


Citation Information: International Journal of Chemical Reactor Engineering, Volume 6, Issue 1, ISSN (Online) 1542-6580, DOI: https://doi.org/10.2202/1542-6580.1772.

Export Citation

©2011 Walter de Gruyter GmbH & Co. KG, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in