Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao

IMPACT FACTOR 2017: 0.881
5-year IMPACT FACTOR: 0.908

CiteScore 2017: 0.86

SCImago Journal Rank (SJR) 2017: 0.306
Source Normalized Impact per Paper (SNIP) 2017: 0.503

See all formats and pricing
More options …
Volume 8, Issue 1


Volume 9 (2011)

Volume 8 (2010)

Volume 7 (2009)

Volume 6 (2008)

Volume 5 (2007)

Volume 4 (2006)

Volume 3 (2005)

Volume 2 (2004)

Volume 1 (2002)

A Review of the Water Gas Shift Reaction Kinetics

Byron Smith R J / Muruganandam Loganathan / Murthy Shekhar Shantha
Published Online: 2010-06-30 | DOI: https://doi.org/10.2202/1542-6580.2238

The world’s progression towards the Hydrogen economy is facilitating the production of hydrogen from various resources. In the carbon based hydrogen production, Water gas shift reaction is the intermediate step used for hydrogen enrichment and CO reduction in the synthesis gas. This paper makes a critical review of the developments in the modeling approaches of the reaction for use in designing and simulating the water gas shift reactor. Considering the fact that the rate of the reaction is dependent on various parameters including the composition of the catalyst, the active surface and structure of the catalyst, the size of the catalyst, age of the catalyst, its operating temperature and pressure and the composition of the gases, it is difficult to narrow down the expression for the shift reaction. With different authors conducting experiments still to validate the kinetic expressions for the shift reaction, continuous research on different composition and new catalysts are also reported periodically. Moreover the commercial catalyst manufacturers seldom provide information on the catalyst. This makes the task of designers difficult to model the shift reaction. This review provides a consolidated listing of the various important kinetic expressions published for both the high temperature and the low temperature water gas shift reaction along with the details of the catalysts and the operating conditions at which they have been validated.

Keywords: water gas shift reaction; reaction kinetics

About the article

Published Online: 2010-06-30

Citation Information: International Journal of Chemical Reactor Engineering, Volume 8, Issue 1, ISSN (Online) 1542-6580, DOI: https://doi.org/10.2202/1542-6580.2238.

Export Citation

©2011 Walter de Gruyter GmbH & Co. KG, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Jose Contreras-Mora, Ritubarna Banerjee, Brandon Bolton, John Valentin, John R. Monnier, and Christopher T. Williams
Organic Process Research & Development, 2018
Nuria García-Moncada, Gianpiero Groppi, Alessandra Beretta, Francisca Romero-Sarria, and José Odriozola
Catalysts, 2018, Volume 8, Number 12, Page 594
Hamzeh Hamadeh, Olivier Mirgaux, and Fabrice Patisson
Materials, 2018, Volume 11, Number 10, Page 1865
F. Santoni, M. DellaPietra, D. Pumiglia, C. Boigues Muñoz, S.J. McPhail, V. Cigolotti, S.W. Nam, M.G. Kang, and S.P. Yoon
Electrochimica Acta, 2018
Jeffrey J. Sims, Cherif Aghiles Ould Hamou, Romain Réocreux, Carine Michel, and Javier B. Giorgi
The Journal of Physical Chemistry C, 2018
Rami Béchara, Hamzeh Hamadeh, Olivier Mirgaux, and Fabrice Patisson
Materials, 2018, Volume 11, Number 7, Page 1094
Lang Xu, Joshua Lin, Yunhai Bai, and Manos Mavrikakis
Topics in Catalysis, 2018
José E. A. Graciano, Benoît Chachuat, and Rita M. B. Alves
Industrial & Engineering Chemistry Research, 2018
Tanja Bauer, Robert Stepic, Patrick Wolf, Fabian Kollhoff, Weronika Karawacka, Christian R. Wick, Marco Haumann, Peter Wasserscheid, David M. Smith, Ana-Sunčana Smith, and Jörg Libuda
Catalysis Science & Technology, 2018
Michael Frenklach, Zhenyuan Liu, Ravi I. Singh, Galiya R. Galimova, Valeriy N. Azyazov, and Alexander M. Mebel
Combustion and Flame, 2018, Volume 188, Page 284
Maojian Wang, Guilian Liu, and Chi Wai Hui
Clean Technologies and Environmental Policy, 2017
Adelino F. Cunha, Miguel N. Moreira, Ana M. Ribeiro, José M. Loureiro, Alírio E. Rodrigues, Janvit Teržan, Petar Djinović, and Albin Pintar
Chemical Engineering and Processing: Process Intensification, 2017
Johann Kirchner, Jasmin Katharina Anolleck, Henry Lösch, and Sven Kureti
Applied Catalysis B: Environmental, 2017
Jinhui Hu, Wenyue Guo, Zong-Huai Liu, Xiaoqing Lu, Houyu Zhu, Feng Shi, Junqing Yan, and Ruibin Jiang
The Journal of Physical Chemistry C, 2016, Volume 120, Number 36, Page 20181
Kuhan Chandru, Alexis Gilbert, Christopher Butch, Masashi Aono, and H. James Cleaves
Scientific Reports, 2016, Volume 6, Number 1
Eva-Maria Köck, Michaela Kogler, Matthias Grünbacher, Chen Zhuo, Ramona Thalinger, Daniela Schmidmair, Lukas Schlicker, Aleksander Gurlo, and Simon Penner
The Journal of Physical Chemistry C, 2016, Volume 120, Number 28, Page 15272
Luka A. Živković, Andrej Pohar, Blaž Likozar, and Nikola M. Nikačević
Applied Energy, 2016, Volume 178, Page 844
Eva-Maria Köck, Michaela Kogler, Bernhard Klötzer, Michael F. Noisternig, and Simon Penner
ACS Applied Materials & Interfaces, 2016, Volume 8, Number 25, Page 16428
Minh Tri Luu, Dia Milani, Manish Sharma, Joseph Zeaiter, and Ali Abbas
Applied Energy, 2016, Volume 177, Page 863
Minghui Zhu, Tulio C. R. Rocha, Thomas Lunkenbein, Axel Knop-Gericke, Robert Schlögl, and Israel E. Wachs
ACS Catalysis, 2016, Volume 6, Number 7, Page 4455
Huong N. T. Nguyen, Nicolas Berguerand, and Henrik Thunman
Industrial & Engineering Chemistry Research, 2016, Volume 55, Number 20, Page 5843
A. Plaza, S. Fail, J.A. Cortés, K. Föttinger, N. Diaz, R. Rauch, and H. Hofbauer
Chemical Engineering Journal, 2016, Volume 301, Page 222
Yongha Park, Youngsan Ju, Dooyong Park, and Chang-Ha Lee
Chemical Engineering Journal, 2016, Volume 292, Page 348
Canan Sener, Thejas S. Wesley, Ana C. Alba-Rubio, Mrunmayi D. Kumbhalkar, Sikander H. Hakim, Fabio H. Ribeiro, Jeffrey T. Miller, and James A. Dumesic
ACS Catalysis, 2016, Volume 6, Number 2, Page 1334
Minghui Zhu and Israel E. Wachs
ACS Catalysis, 2016, Volume 6, Number 2, Page 722
Shaoli Liu, Yong-Wang Li, Jianguo Wang, and Haijun Jiao
The Journal of Physical Chemistry C, 2015, Volume 119, Number 51, Page 28377
Wei-Hsin Chen, Mu-Rong Lin, Tzong-Shyng Leu, and Shan-Wen Du
International Journal of Hydrogen Energy, 2011, Volume 36, Number 18, Page 11727
Firas N. Ridha, Dennis Lu, Arturo Macchi, and Robin W. Hughes
Fuel, 2015, Volume 153, Page 202
Rajesh S Kempegowda, Gonzalo del Alamo, David Berstad, Mette Bugge, Berta Matas Güell, and Khanh-Quang Tran
Energy & Fuels, 2015, Volume 29, Number 2, Page 808
G. Herbert Vogel
Chemie Ingenieur Technik, 2014, Volume 86, Number 12, Page 2135
Rei-Yu Chein, Yen-Cho Chen, and Jacob Nan-Chu Chung
Chemical Engineering & Technology, 2014, Volume 37, Number 11, Page 1907
Canan Karakaya, Robin Otterstätter, Lubow Maier, and Olaf Deutschmann
Applied Catalysis A: General, 2014, Volume 470, Page 31
San Shwe Hla, L.D. Morpeth, Y. Sun, G.J. Duffy, A.Y. Ilyushechkin, D.G. Roberts, and J.H. Edwards
Fuel, 2013, Volume 114, Page 178
S. Ay, H. Atakül, G. Nezihi Özyönüm, A. Sarıoğlan, A. Ersöz, F. Akgün, and P. Aksoy
Fuel Processing Technology, 2013, Volume 116, Page 175
Feyza Gökaliler, Z. Ilsen Önsan, and A. Erhan Aksoylu
Catalysis Communications, 2013, Volume 39, Page 70
V. Spallina, F. Gallucci, M.C. Romano, P. Chiesa, G. Lozza, and M. van Sint Annaland
Chemical Engineering Journal, 2013, Volume 225, Page 174
Reiyu Chein, Yen-Cho Chen, Jui-Yu Chen, and J.N. Chung
International Journal of Hydrogen Energy, 2012, Volume 37, Number 8, Page 6562

Comments (0)

Please log in or register to comment.
Log in