Jump to ContentJump to Main Navigation
Show Summary Details

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao

IMPACT FACTOR increased in 2015: 0.759

SCImago Journal Rank (SJR) 2015: 0.276
Source Normalized Impact per Paper (SNIP) 2015: 0.473
Impact per Publication (IPP) 2015: 0.636

99,00 € / $149.00 / £75.00*

See all formats and pricing


30,00 € / $42.00 / £23.00

Get Access to Full Text

Hydrodynamic Studies on Three-Phase Combined (Internal & External) Loop Airlift Fluidized Bed Reactor Using Newtonian and non-Newtonian Liquids: Minimum Fluidization Velocity and Liquid Holdup

Sivakumar Venkatachalam1 / Akilamudhan Palaniappan2 / Kannan Kandasamy3

1Kongu Engineering College,

2Erode Sengunthar Engineering College,

3Kongu Engineering College,

Citation Information: International Journal of Chemical Reactor Engineering. Volume 9, Issue 1, ISSN (Online) 1542-6580, DOI: 10.1515/1542-6580.2473, August 2011

Publication History

Published Online:

A novel combined airlift loop fluidized bed reactor was proposed in this work. The internal and external loops were combined and the hydrodynamic parameters like minimum fluidization velocity and liquid holdup were studied for Newtonian and non-Newtonian fluids. Studies were conducted using Newtonian fluids of water, n-butanol, 60% and 80% glycerol and non - Newtonian fluids such as 0.25%, 0.6% and 1.0% Carboxy Methyl Cellulose (CMC) aqueous solutions were employed in the liquid phases. Spheres, Bearl saddle and Raschig ring with different sizes were used as solid phase. The experimental results indicated that the increase in particle size and sphericity increased minimum fluidization velocity whereas increase in superficial gas velocity decreased minimum fluidization velocity. In addition, the liquid holdup increased with increase in particle size and superficial liquid velocity. Furthermore, an increase in superficial gas velocity decreased the liquid holdup for Newtonian and non-Newtonian systems. Two separate correlations were developed to predict the minimum fluidization velocity and liquid holdup based on the experimental results for both Newtonian and non-Newtonian liquids for a wide range of operating conditions. The capability of the proposed correlation for minimum fluidization velocity and liquid holdup was examined and reasonable agreement between predicted and experimental results of Newtonian and non-Newtonian liquids suggested the applicability of the proposed correlations.

Keywords: combined loop airlift fluidized bed reactor; minimum fluidization velocity; liquid holdup

Comments (0)

Please log in or register to comment.