Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao

12 Issues per year


IMPACT FACTOR 2017: 0.881
5-year IMPACT FACTOR: 0.908

CiteScore 2017: 0.86

SCImago Journal Rank (SJR) 2017: 0.306
Source Normalized Impact per Paper (SNIP) 2017: 0.503

Online
ISSN
1542-6580
See all formats and pricing
More options …

Continuous Production of Biodiesel with Supercritical Methanol: a Simple Compressible Flow Model for Tubular Reactors

Ruengwit Sawangkeaw / Witsanee Satayanon / Kunchana Bunyakiat / Séverine Camy / Jean-Stéphane Condoret / Somkiat Ngamprasertsith
Published Online: 2011-09-29 | DOI: https://doi.org/10.2202/1542-6580.2758

From an industrial point of view, the continuous process for biodiesel production with supercritical methanol (SCM) is more appropriate than the batch process. However, lab-scale studies on the continuous process have shown that the maximum conversion always remains slightly lower than that obtained in the batch process. This work proposes a simple compressible flow model to predict the conversion of methanol and oils into methyl esters (ME) along the length of a tubular reactor and further demonstrates the effect of the development of the compressibility factor of the reaction mixture upon the conversion efficiency to ME. The governing equation was derived from a general molar balance in the tubular reactor using transesterification kinetics of refined-bleached-deodorized (RBD) palm oil in SCM coupled with a suitable thermodynamic model with adjusted binary interaction parameters. Vapor-liquid equilibrium data for triolein + methanol, methyl oleate + methanol and glycerol + methanol mixtures were obtained from the literature and then refitted with the thermodynamic model consisting of the Peng-Robinson equation of state and MHV2 mixing rules to find the set of adequate interaction parameters. In order to check the validity of the proposed model, the predicted ME contents were compared with observed values in a lab-scale continuous reactor at various operating temperatures, pressures and methanol to oil molar ratios. The proposed model proved to be adequate for predicting the final conversion to ME for operating temperatures below 320°C, when the thermal degradation reactions of unsaturated fatty acids did not interfere. Our results also illustrate the importance of taking into account the development of the compressibility factor with time and reactor length, since this was shown to be the cause of the lower transesterification reaction rate in the tubular SCM process. The findings in this work could be employed as a knowledgebase to further develop a better model for continuous production of biodiesel with SCM in a tubular reactor.

Keywords: vegetable oil; biodiesel; transesterification; supercritical methanol; fluid phase equilibria; modeling

About the article

Published Online: 2011-09-29


Citation Information: International Journal of Chemical Reactor Engineering, Volume 9, Issue 1, ISSN (Online) 1542-6580, DOI: https://doi.org/10.2202/1542-6580.2758.

Export Citation

©2012 Walter de Gruyter GmbH & Co. KG, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Winatta Sakdasri, Ruengwit Sawangkeaw, Yaocihuatl Medina-Gonzalez, Séverine Camy, Jean-Stéphane Condoret, and Somkiat Ngamprasertsith
Industrial & Engineering Chemistry Research, 2016, Volume 55, Number 18, Page 5190

Comments (0)

Please log in or register to comment.
Log in