Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao

12 Issues per year

IMPACT FACTOR 2017: 0.881
5-year IMPACT FACTOR: 0.908

CiteScore 2017: 0.86

SCImago Journal Rank (SJR) 2017: 0.306
Source Normalized Impact per Paper (SNIP) 2017: 0.503

See all formats and pricing
More options …
Volume 11, Issue 1

Kinetic Study of Light Mercaptans in the Presence of Merox Catalyst and Caustic Soda

Mohammad Reza Ehsani
  • Corresponding author
  • Department of Chemical Engineering, Isfahan University of Technology, Isfahan 8415683111, Iran
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Peyman Mirjani / Alireza Safadoost
Published Online: 2013-08-08 | DOI: https://doi.org/10.1515/ijcre-2012-0005


Due to the disgusting smell of light mercaptans, researchers are not interested in working with them, so there is not enough information available on their kinetics. This work presents kinetic investigation of oxidation of ethyl, normal-propyl, iso-propyl, and iso-butyl mercaptans in the presence of Merox catalyst. The results demonstrated that the oxidation rates of all mercaptans were first-order reaction with respect to mercaptan concentration, and the increase in NaOH concentration reduced the oxidation rate. While it was observed that there was a similarity between oxidation pattern of iso-propyl and ethyl mercaptans, another similarity was discovered between normal-propyl and iso-butyl mercaptans.

Keywords: ethyl mercaptan; iso propyl mercaptan; normal propyl mercaptan; iso butyl mercaptan; catalytic oxidation


  • 1.

    Shusterman Dennis MPH. Critical review: “the health significance of environmental odor pollution”. Environ Health 1992;47:76–87.Google Scholar

  • 2.

    Alibouri M, Ghoreishi SM, Aghabozorg HR. Hydrodesulfurization of dibenzothiophene using CoMo/Al-HMS nanocatalyst synthesized by supercritical deposition. J Supercritical Fluids 2009;49:239–48.CrossrefWeb of ScienceGoogle Scholar

  • 3.

    Yang B, Wang S, Tian S, Liu L. Determination of hydrogen sulfide in gasoline by Au nanoclusters modified glassy carbon electrode. Electrochem Commun 2009;11:1230–3.CrossrefWeb of ScienceGoogle Scholar

  • 4.

    Soleimani M, Bassi A, Margaritis A. Research review paper biodesulfurization of refractory organic sulfur compounds in fossil fuels. Biotechnol Adv 2007;25:570–96.CrossrefWeb of ScienceGoogle Scholar

  • 5.

    Gao J, Wang S, Jiang Z, Lu H, Yang Y, Jing F, Li C. Deep desulfurization from fuel oil via selective oxidation using an amphiphilic peroxotungsten catalyst assembled in emulsion droplets. J Mol Catalysis A: Chem 2006;258:261–6.CrossrefGoogle Scholar

  • 6.

    Serafim DM, Stradiotto NR. Determination of sulfur compounds in gasoline using mercury film electrode by square wave voltammetry. Fuel 2008;87:1007–13.Web of ScienceCrossrefGoogle Scholar

  • 7.

    Lin L, Zhang Y, Kong Y. Review article recent advances in sulfur removal from gasoline by pervaporation. Fuel 2009;88:1799–809.Web of ScienceCrossrefGoogle Scholar

  • 8.

    He J, Zhao J-b, Lan Y-x. Adsorption and photocatalytic oxidation of dimethyl sulfide and ethyl mercaptan over layered K1–2xMnxTiNbO5and K1–2xNixTiNbO5. J Fuel Chem Technol 2009;37:485–8.Google Scholar

  • 9.

    Wang W, Wang S, Liu H. Desulfurization of gasoline by a new method of electrochemical catalytic oxidation. Fuel 2007;86:2747–53.CrossrefGoogle Scholar

  • 10.

    McBryde WAE. Petroleum deodorized: early Canadian history of the “doctor sweetening” process. Annals Sci 1991;48:103–11.CrossrefGoogle Scholar

  • 11.

    Krause JH, Tom TB. Color formation in copper chloride–sweetened distillates. Ind Eng Chem 1952;44:1603–6.CrossrefGoogle Scholar

  • 12.

    Basu B, Satapathy S, Bhatnagar AK. Merox and related metal phthalocyanine catalyzed oxidation processes. Catalysis Rev: Sci Eng 1993;35:571–609.CrossrefGoogle Scholar

  • 13.

    Mohammadbeigi K, Tajerian M. Demercaptanization of distillate (DMD). Petroleum Coal 2004;46:17–22.Google Scholar

  • 14.

    Leitão A, Rodrigues A. Fixed-bed reactor for gasoline sweetening: kinetics of mercaptan oxidation and simulation of the Merox reactor unit. Chem Eng Sci 1990;45:679–85.CrossrefGoogle Scholar

  • 15.

    Leitão A, Rodrigues A. Studies on the Merox process: kinetics of n-butyl mercaptan oxidation. Chem Eng Sci 1989;44:1245–53.CrossrefGoogle Scholar

  • 16.

    Leitão A, Rodrigues A. Modeling and simulation of the impregnation step of the Merox process. Comput Chem Eng 1991;15:287–96.CrossrefGoogle Scholar

  • 17.

    Farshi A, Rabiei Z. Kinetic study for oxidation of existing mercaptans in kerosene using impregnated activated carbon with Merox catalyst in alkaline solution. Petroleum Coal 2005;47:49–56.Google Scholar

  • 18.

    Shirai H, Tsuiki H, Masuda E, Koyama T, Hanabusa K, Kobayashi N. Functional metallomacrocycles and their polymers. 25. Kinetics and mechanism of the biomimetic oxidation of thiol by oxygen catalyzed by homogeneous polycarboxyphthalocyaninato metals. J Phys Chem 1991;95:417–23.CrossrefGoogle Scholar

  • 19.

    Buck T, Preussner E, woehrle D, Schulz-Ekloff G. Influence of the metal type in the mercaptan oxidation on metal phthalocyanines. J Mol Catalysis 1989;53:L17–L19.CrossrefGoogle Scholar

  • 20.

    Vasefi S, Parvari M. Alkaline earth metal oxides on γAl2O3 – supported Co catalyst and their application to mercaptan oxidation. Korean J Chem Eng 2010;27:422–30.Web of ScienceCrossrefGoogle Scholar

  • 21.

    Yabroff DL. Extraction of mercaptans with alkaline solutions. IndusEng Chem 1940;32:257–62.CrossrefGoogle Scholar

  • 22.

    Leitão A, Rodrigues A. The simulation of solid-liquid adsorption in activated carbon columns using estimates of intraparticle kinetic parameters obtained from continuous stirred tank reactor experiments. Chem Eng J 1995;58:239–44.Google Scholar

  • 23.

    Chatti I, Ghorbel A, Grange P, Colin JM. Oxidation of mercaptans in light oil sweetening by cobalt (II) phthalocyanine-hydrotalcite catalysts. Catalyst Today 2002;75:113–7.CrossrefGoogle Scholar

  • 24.

    Shokri S, Ganji H, Ahmadi Marvest M, Bazmi M. Study of the effective factors in gasoline sweetening process. Petroleum Coal 2008:50;1–9.Google Scholar

  • 25.

    Ganguly SK, Das G, Mohanty B, Bhargava R, Dawra S. The kinetics of catalytic oxidation of 1-butanethiol in a gas liquid system. Petroleum Sci Technol 2010;28:1287–96.CrossrefGoogle Scholar

  • 26.

    Wallace TJ, Schriesheim A, Hurwits H, Glaser MB. Base catalyzed oxidation of mercaptans in presence of inorganic transition metal complexes. Indus Eng Chem Process Design 1964;3:237–41.CrossrefGoogle Scholar

  • 27.

    Wallace TJ, Schriesheim A. Solvent effects in the base-catalyzed oxidation of mercaptans with molecular oxygen. J Organic Chem 1962;27:1514–6.CrossrefGoogle Scholar

  • 28.

    Rollmann LD. Porous, polymer-bonded metalloporphyrins. J Am Chem Soc 1975;97:2132–6.CrossrefGoogle Scholar

  • 29.

    Leung PSK, Bettrton EA, Hoffman MR. Kinetics and mechanism of the reduction of Cobalt(II) 4, 4', 4'', 4'''- Tetrasulfophthalocyanine by 2-Mercaptanol under anoxic conditions.J Phys Chem 1989;93:430–3.CrossrefGoogle Scholar

  • 30.

    Carr NL, Shah YT. Rates and extraction of mercaptan sulfur from pentane by caustic solution. Cana J Chem Eng 1979;57:35–41.Google Scholar

  • 31.

    Levenspiel O. Chemical reaction engineering, 3rd ed. New York: John Wiley & Sons, 1999:14–29.Google Scholar

  • 32.

    Gleim WKT. U.S. Patent 2, 966, 452, 1960, December 27.Google Scholar

About the article

Published Online: 2013-08-08

Citation Information: International Journal of Chemical Reactor Engineering, Volume 11, Issue 1, Pages 431–442, ISSN (Online) 1542-6580, ISSN (Print) 2194-5748, DOI: https://doi.org/10.1515/ijcre-2012-0005.

Export Citation

©2013 by Walter de Gruyter Berlin / Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in