Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao

12 Issues per year

IMPACT FACTOR 2017: 0.881
5-year IMPACT FACTOR: 0.908

CiteScore 2017: 0.86

SCImago Journal Rank (SJR) 2017: 0.306
Source Normalized Impact per Paper (SNIP) 2017: 0.503

See all formats and pricing
More options …
Volume 11, Issue 1

Bubble Columns with Internals: A Review

Ahmed A. Youssef / Muthanna H. Al-Dahhan
  • Chemical and Biological Engineering Department, Missouri University of Science and Technology (MST), Rolla, MO 65409, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Milorad P. Dudukovic
Published Online: 2013-06-18 | DOI: https://doi.org/10.1515/ijcre-2012-0023


Most industrial bubble column reactors require the utilization of internal structures for heat transfer and/or for controlling the flow structures and back mixing in the system. The internals denote all types of innards added to a bubble column, such as perforated plates, baffles, vibrating helical springs, mixers, and heat exchanger tubes. In commercial scale bubble columns, instrumentation probes, down-comers, and risers with heat exchangers are all considered. This review presents the state-of-knowledge of bubble columns with internals. It starts with an introduction. The second section discusses the horizontal internals, and the following section examines the studies involving vertical internals.

Keywords: Bubble Columns; Horizontal Internals; Heat exchangers


  • 1.

    Duduković MP. Opaque multiphase reactors: experimentation, modeling and troubleshooting. Oil Gas Sci Technol 2000;55:135–58.CrossrefGoogle Scholar

  • 2.

    Schlüter S, Steiff A, Weinspach, P-M. Heat transfer in two- and three-phase bubble column reactors with internals. Chem Eng Process 1995;34:157–72.CrossrefGoogle Scholar

  • 3.

    Duduković MP, Larachi F, Mills PL. Multiphase reactors – revised. Chem Eng Sci 1999;54:1975–95.CrossrefGoogle Scholar

  • 4.

    Shetty SA, Kantak MV, Kelkar BG. Gas-phase backmixing in bubble – column reactors. AIChE J 1992;38:1013–26.CrossrefGoogle Scholar

  • 5.

    Krishna R, Ellenberger J. Gas hold-up in bubble column reactors operating in the churn-turbulent flow regime. Am Inst Chem Eng J 1996;42:2627–34.CrossrefGoogle Scholar

  • 6.

    Shaikh A, Al-Dahhan MH. A review on flow regime transition in bubble columns. Int J Chem Reac Eng 2007;5.CrossrefGoogle Scholar

  • 7.

    Amstel JP, Rietema K. Wet air oxidation of sewage sludge: part II-the oxidation of real sludges. Chem Ing Tech 1973;45:1205–11.CrossrefGoogle Scholar

  • 8.

    Deckwer WD. Bubble column reactors. Chichester: Wiley, 1992.Google Scholar

  • 9.

    Steynberg A, Dry M. Fischer-Tropsch technology. Amsterdam: Elsevier, 2004.Google Scholar

  • 10.

    Maretto C, Piccolo V. Fischer-Tropsch process with a multistage bubble column reactor, US Patent 5,827,902, 1998.Google Scholar

  • 11.

    Krishna R, Sie ST. Design and scale-up of the Fischer–Tropsch bubble column slurry reactor. Fuel Process Technol 2000;64:73–105.CrossrefGoogle Scholar

  • 12.

    Behkish A, Lemoine R, Sehabiague L, Oukaci R, Morsi BI. Gas holdup and bubble size behavior in a large-scale slurry bubble column reactor operating with an organic liquid under elevated pressures and temperatures. Chem Eng J 2007;128:69–84.CrossrefGoogle Scholar

  • 13.

    Duduković MP. Relevance of multiphase reaction engineering to modern technological challenges. Ind Eng Chem Res 2007;46:8674–86.CrossrefGoogle Scholar

  • 14.

    Krishna R, Ellenberger J. Improving gas–liquid contacting in bubble columns by vibration excitement. Int J Multiphase Flow 2002;28:1223–34.CrossrefGoogle Scholar

  • 15.

    Alvaré J, Al-Dahhan MH. Liquid phase mixing in trayed bubble column reactors. Chem Eng Sci 2006;61:1819–35.CrossrefGoogle Scholar

  • 16.

    Rados N. Slurry bubble column hydrodynamics: experimentation and modeling. DSc Thesis, Washington University, Saint Louis, MO, 2003.Google Scholar

  • 17.

    Svendsen HF, Jakobsen HA, Torvik R. Local flow structures in internal loop and bubble column reactors. Chem Eng Sci 1992;47:3297–304.CrossrefGoogle Scholar

  • 18.

    Ranade VV. Flow in bubble columns: some numerical experiments. Chem Eng Sci 1992;4:1857–9.CrossrefGoogle Scholar

  • 19.

    Grienberger J, Hofmann H. Investigations and modelling of bubble columns. Chem Eng Sci 1992;47:2215–20.CrossrefGoogle Scholar

  • 20.

    Sokolichin A, Eigenberger G. Gas–liquid flow in bubble columns and loop reactors: part I detailed modelling and numerical simulation. Chem Eng Sci 1994;49:5735–46.CrossrefGoogle Scholar

  • 21.

    Lapin A, Lübbert A. Numerical simulation of the dynamics of two-phase gas–liquid flows in bubble columns. Chem Eng Sci 1994;49:3661–74.CrossrefGoogle Scholar

  • 22.

    Delnoij E, Kuipers JAM, van Swaaij WPM. Computational fluid dynamics applied to gas-liquid contactors. Chem Eng Sci, 1997;52:3623–38.CrossrefGoogle Scholar

  • 23.

    Pan Y, Dudukovic MP, Chang M. Dynamic simulation of bubbly flow in bubble columns. Chem Eng Sci 1999;54:2481–89.CrossrefGoogle Scholar

  • 24.

    Sanyal J, Vásquez S, Roy S, Dudukovic MP. Numerical simulation of gas–liquid dynamics in cylindrical bubble column reactors. Chem Eng Sci 1999;54:5071–83.CrossrefGoogle Scholar

  • 25.

    Krishna R, van Baten JM. Rise characteristics of gas bubbles in a 2D rectangular column: VOF simulations vs. experiments. Int Commun Heat Mass Transf 1999;26:965–74.CrossrefGoogle Scholar

  • 26.

    Olmos E. Etude expérimentale et numérique des écoulements gaz-liquide en colonnes à bulles. Thèse de doctorat, Institut National Polytechnique de Lorraine, Nancy, France, 2002.Google Scholar

  • 27.

    Lapin A, Paaschen T, Junghans K, Lübbert A. Bubble column fluid dynamics, flow structures in slender columns with large-diameter ring-spargers. Chem Eng Sci 2002;57:1419–24.CrossrefGoogle Scholar

  • 28.

    Chen P, Sanyal J, Dudukovic MP. Numerical simulation of bubble columns flows: effect of different breakup and coalescence closures. Chem Eng Sci 2005;60:1085–101.CrossrefGoogle Scholar

  • 29.

    Chen P, Gupta P, Dudukovic MP, Toseland BA. Hydrodynamics of slurry bubble column during dimethyl ether (DME) synthesis: gas–liquid recirculation model and radioactive tracer studies. Chem Eng Sci 2006;61:6553–70.CrossrefGoogle Scholar

  • 30.

    Gupta P, Ong B, Al-Dahhan MH, Dudukovic MP, Toseland BA. Hydrodynamics of churn turbulent bubble columns: gas-liquid recirculation and mechanistic modeling. Cat Today 2001;64:253–69.CrossrefGoogle Scholar

  • 31.

    Degaleesan S, Dudukovic MP, Pan Y. Experimental study of gas induced liquid-flow structures in bubble columns. AIChE J 2001;47:1913–31.CrossrefGoogle Scholar

  • 32.

    Wild G, Poncin S, Li H, Olmos E. Some aspects of the hydrodynamics of bubble columns. Int J Chem Reac Eng 2003;1.CrossrefGoogle Scholar

  • 33.

    Yang GQ, Du B, Fan LS. Bubble formation and dynamics in gas–liquid–solid fluidization – a review. Chem Eng Sci 2007;62:2–27.CrossrefGoogle Scholar

  • 34.

    Mudde RF. Gravity-driven bubbly flows. Ann Rev Fluid Mech 2003;37:393–423.Google Scholar

  • 35.

    Diaz ME, Iranzo A, Cuadra D, Barbero R, Montes FJ, Galan MA. Numerical simulation of the gas-liquid flow in a laboratory scale bubble column: influence of bubble size distribution and non-drag forces. Chem Eng J 2008;139:363–79.CrossrefGoogle Scholar

  • 36.

    Jakobsen HA, Lindborg H, Dorao CA. Modeling of bubble column reactors: progress and limitations. Ind Eng Chem Res 2005;44:5107–151.CrossrefGoogle Scholar

  • 37.

    Devanathan N, Moslemian D, Dudukovic MP. Flow mapping in bubble columns using CARPT. Chem Eng Sci 1990;45:2285–91.CrossrefGoogle Scholar

  • 38.

    Kumar SB, Devanathan N, Moslemian D, Dudukovic MP. Effect of scale on liquid recirculation in bubble columns. Chem Eng Sci 1994;49:5637–52.CrossrefGoogle Scholar

  • 39.

    Berg S, Schlüter S, Weinspach P-M. Ruckvermischung in Blasensaulen mit Einbauten. Chem Ing Tech 1995;67:289.CrossrefGoogle Scholar

  • 40.

    Millies M, Mewes D. Calculation of circulating flows in bubble columns. Chem Eng Sci 1995;50:2093–106.CrossrefGoogle Scholar

  • 41.

    Pradhan AK, Parichia RK, De P. Gas hold-up in non Newtonian solutions in a bubble column with internals. Can J Chem Eng 1993;71:468–71.CrossrefGoogle Scholar

  • 42.

    Steiff A, Weinspach P-M. Heat transfer in stirred and non-stirred gas liquid reactors. Ger Chem Eng 1978;150:150–161.Google Scholar

  • 43.

    Dyer P. Catalyst and reactor development for a liquid phase Fischer-Tropsch process (Air Products and Chemicals Report to DOE-Final report Task 4), 1989.Google Scholar

  • 44.

    Davis B. Fischer–Tropsch synthesis: overview of reactor development and future potentialities. Top Cat 2005;32:143–68.CrossrefGoogle Scholar

  • 45.

    Fair JR, Lambright AJ, Anderson JW. Heat transfer and gas holdup in a sparged contactor. Ind Eng Chem Process Des Dev 1962;1:33–36.CrossrefGoogle Scholar

  • 46.

    Schügerl K. Development of bioreaction engineering. Adv Biochem Eng Biotechnol 2000;70:41–76.Google Scholar

  • 47.

    Fair JR. Trends in distillation technology. Ind Eng Chem 1962;54:53–57.CrossrefGoogle Scholar

  • 48.

    Fair JR. Developments in distillation technology. Ind Eng Chem 1964;56:61–64.CrossrefGoogle Scholar

  • 49.

    Mashelkar RA, Sharma, MM. Mass transfer in bubble and packed bubble columns. Trans Inst Chem Eng1970;48:162–72.Google Scholar

  • 50.

    Khoze AN, Burdukov AP, Nakoryakov VE, Pokusaev BG, Kuz’min, VA. Convective heat transfer in a dynamic two-phase bed. J Eng Phys 1971;20:759–76.CrossrefGoogle Scholar

  • 51.

    Sekizawa T, Kubota H. Liquid mixing in multistage bubble columns. J Chem Eng Jpn 1974;7:441–6.Google Scholar

  • 52.

    Aksel’rod LS. Vorotnikova NI, Kozlov AA. Heat transfer and several aspects of hydrodynamics of bubble beds on sieve trays equipped with tube bundles. Heat Transf – Sov Res 1976;8:25–33.Google Scholar

  • 53.

    Vorotnikova NI, Aksel’rod LS. Heat transfer during the transverse flow of a bubbling stream around pipes and pipe bundles. Trudy Moskovskogo Instituta Khimicheskogo Mashinostroeniya 1975;57:101–108.Google Scholar

  • 54.

    Blass E, Cornelius W. The residence time distribution of solid and liquid in multistage bubble columns in the cocurrent flow of gas, liquid and suspended solid. Int J Multiphase Flow 1977;3:459–69.CrossrefGoogle Scholar

  • 55.

    Chen BH, Yang NS, McMillan AF. Gas holdup and pressure drop for air-water flow through plate bubble columns. Can J Chem Eng 1986;64:387–92.CrossrefGoogle Scholar

  • 56.

    Karr AE. Performance of a reciprocating-plate extraction column. AIChE J 1959;5:446–52.CrossrefGoogle Scholar

  • 57.

    Chen BH, Yang NS. Characteristics of a cocurrent multistage bubble column. Ind Eng Chem Res 1989;28:1405–10.CrossrefGoogle Scholar

  • 58.

    Kawasaki H, Hirano H, Tanaka H. Effects of multiple draft tubes with perforated plates on gas holdup and volumetric mass transfer coefficient in a bubble column. J Chem Eng Jpn 1994;27:669–70.CrossrefGoogle Scholar

  • 59.

    Al Taweel AM, Ramadan AM, Moharam MR, El Mofty SM, Ityokumbul MT. Effect of honeycomb inserts on axial mixing in bubble columns. Chem Eng Res Des 1996;74a:456–62.Google Scholar

  • 60.

    Palaskar SN, De JK, Pandit AB. Liquid phase RTD studies in sectionalized bubble column. Chem Eng Technol 2000;23:61–9.CrossrefGoogle Scholar

  • 61.

    Maretto C, Krishna R. Design and optimisation of a multi-stage bubble column slurry reactor for Fischer-Tropsch synthesis. Cat Today 2001;66:241–48.CrossrefGoogle Scholar

  • 62.

    Kemoun A, Rados N, Li F, Al-Dahhan MH, Dudukovic MP, Mills PL, et al. Gas holdup in a trayed cold-flow bubble column. Chem Eng Sci 2001;56:1197–205.CrossrefGoogle Scholar

  • 63.

    Colmenares A, Sevilla M, Goncalves JJ, Gonzalez-Mendizabal D. Fluid-dynamic experimental study in a bubble column with internals. Int Commun Heat Mass Transf 2001;28:389–98.CrossrefGoogle Scholar

  • 64.

    Akita K, Yoshida F. Gas holdup and volumetric mass transfer coefficient in bubble columns. Ind Eng Chem Process Des Dev 1973;12:76–80.CrossrefGoogle Scholar

  • 65.

    Schumpe A, Deckwer WD. Gas holdups, specific interfacial areas, and mass transfer coefficients of aerated carboxymethyl cellulose solutions in a bubble column. Ind Eng Chem Process Des Develop [87];21:706–11.Google Scholar

  • 66.

    Dreher AJ, Krishna R. Liquid-phase backmixing in bubble columns, structured by introduction of partition plates. Catalysis Today 2001;69:165–70.CrossrefGoogle Scholar

  • 67.

    Nosier SA. Solid-liquid mass transfer at gas sparged tube bundles. Chem Eng Technol 2003;26:1151–54.CrossrefGoogle Scholar

  • 68.

    Mochizuki S, Matsui T. Liquid-solid mass transfer rate in liquid-gas upward concurrent flow in packed beds. Chem Eng Sci 1974;29:1328–30.CrossrefGoogle Scholar

  • 69.

    Nosier SA, El-Kayar A, Farag HA, Sedahmed GH. Solid-liquid mass transfer at gas sparged fixed bed of Raschig rings. Int Commun Heat Mass Transf 1997;24:733–40.CrossrefGoogle Scholar

  • 70.

    Cavatorta ON, Bohm U. Heat and mass transfer in gas sparging systems: empirical correlations and theoretical models. Chem Eng Res Des 1988;66a:265–74.Google Scholar

  • 71.

    Doshi YK, Pandit AB. Effect of internals and sparger design on mixing behavior in sectionalized bubble column. Chem Eng J (Amsterdam, Netherlands) 2005;112:117–29.CrossrefGoogle Scholar

  • 72.

    Pandit AB, Doshi YK. Mixing time studies in bubble column reactor with and without internals. Int J Chem Reac Eng 2005;3.CrossrefGoogle Scholar

  • 73.

    Alvaré J, Al-Dahhan MH. Gas holdup in trayed bubble column reactors. Ind Eng Chem Res 2006;45:3320–26.CrossrefGoogle Scholar

  • 74.

    Mecaial N, Sadik B. Hydrodynamic and RTD of Sectionalized Bubble Column. Proceedings of the 12th International Conference on Fluidization – New Horizons in Fluidization Engineering, 2007.Google Scholar

  • 75.

    Hall CC, Taylor AH. Design and operation of a fluid catalyst pilot plant for Fischer-Tropsch synthesis. J Inst Petrol 1955;41:101–24.Google Scholar

  • 76.

    Kölbel H, Ackermann P. US Patent 2,853,369 (Sept. 23, 1958).Google Scholar

  • 77.

    Kölbel H, Langheim R. US Patent 2,852,350 (Sept. 16, 1958).Google Scholar

  • 78.

    Hofmann H. Packed upflow bubble columns. Chemie Ingenieur Technik 1982;54:865–76.CrossrefGoogle Scholar

  • 79.

    Gestrich W, Harth H. Liquid-phase backmixing in packed bubble columns. Chemie Ingenieur Technik 1981;53:308–14.CrossrefGoogle Scholar

  • 80.

    Carleton AJ, Flain RJ, Rennie J, Valentin HH. Some properties of a packed bubble column. Chem Eng Sci 1967;22:1839–45.CrossrefGoogle Scholar

  • 81.

    Voyer RD, Miller AI. Improved gas-liquid contacting in co-current flow. Can J Chem Eng 1968;46:335–41.CrossrefGoogle Scholar

  • 82.

    Magnussen P, Shumacher V, Rotermund GW, Hafnef F. Residence time behavior of the liquid phase in bubble columns with large diameter. Chemie Ingenieur Technik 1978;50:811.CrossrefGoogle Scholar

  • 83.

    Korte H. Heat transfer in bubble columns with and without internals. PhD Thesis, University of Dortmund, 1987.Google Scholar

  • 84.

    Wu C. Heat transfer and bubble dynamics in slurry bubble columns for Fischer-Tropsch clean alternative energy. DSc Thesis, Washington University, Saint Louis, MO, 2007.Google Scholar

  • 85.

    Shah YT, Ratway CA, Mcilvried HG. Back-mixing characteristics of a bubble column with vertically suspended tubes. Trans Ins Chem Eng 1978;56:107–12.Google Scholar

  • 86.

    Kölbel H, Ralek M. The Fischer-Tropsch synthesis in the liquid phase. Cat Rev, Sci Eng 1980;21:225–74.CrossrefGoogle Scholar

  • 87.

    Hagino H, Odagiri H, Okutani J. US Patent 4,327,042 (Dec. 22, 1980).Google Scholar

  • 88.

    Yamashita F. Effects of vertical pipe and rod internals on gas holdup in bubble columns. J Chem Eng Jpn 1987;20:204–206.CrossrefGoogle Scholar

  • 89.

    O’Dowd W, Smith DN, Ruether JA, Saxena SC. Gas and solids behavior in a baffled and unbaffled slurry bubble column. AIChE J 1987;33:1959–1970.CrossrefGoogle Scholar

  • 90.

    Wasan DT, Ahliwalia MS, Consecutive film and surface renewal mechanism for heat and mass transfer from a wall. Chem Eng Sci 1969;24:1535–42.CrossrefGoogle Scholar

  • 91.

    Bernemann K. On the hydrodynamics and mixing of the liquid phase in bubble columns with longitudinal tube bundles. PhD Thesis, University of Dortmund, 1989.Google Scholar

  • 92.

    Forret A, Schweitzer JM, Gauthier T, Krishna R, Schweich D. Liquid dispersion in large diameter bubble columns, with and without internals. Can J Chem Eng 2003;81:360–66.Google Scholar

  • 93.

    Kafarov VV, Kruglik AE, Trofimov VI. Comparative evaluation of the effect of installation of some standard heat exchangers in bubble-type columns on the average gas content and structure of liquid-phase streams. Zhurnal Prikladnoi Khimii 1975;48:229–32.Google Scholar

  • 94.

    Gaspillo PD, Goto S. Mass transfer in bubble slurry column with static mixer in draft tube. J Chem Eng Jpn 1991;24:680–2.CrossrefGoogle Scholar

  • 95.

    Saxena SC, Patel BB. Heat transfer investigations in a bubble column with immersed probes of different diameters. Int Commun Heat and ass Transf 1991;18:467–78.Google Scholar

  • 96.

    Saxena SC, Rao NS, Yousuf M. Hydrodynamic and heat transfer investigations conducted in a bubble column with fine powders and a viscous liquid. Powder Technol 1991;67:265–75.CrossrefGoogle Scholar

  • 97.

    Saxena SC, Chen ZD. Heat transfer in baffled bubble columns of dilute slurries of fine powders and viscous liquids. Exp Heat Transf, Fluid Mech Thermodyn 1993. Proc. World Conf., 1993; 3rd, 2:1451–8.Google Scholar

  • 98.

    Li H, Prakash A. Heat transfer and hydrodynamics in a three-phase slurry bubble column. Ind Eng Chem Res 1997;36:4688–94.CrossrefGoogle Scholar

  • 99.

    Luo X, Lee DJ, Lau R, Yang GQ, Fan L-S. Maximum stable bubble size and gas hold up in high-pressure slurry bubble column. AIChE J 1999;45:665–80.CrossrefGoogle Scholar

  • 100.

    Saxena SC, Rao NS, Thimmapuram PR. Gas phase holdup in slurry bubble columns for two- and three-phase systems. Chem Eng J (Amsterdam, Netherlands) 1992;49:151–9.CrossrefGoogle Scholar

  • 101.

    Saxena SC. A novel heat exchanger design for slurry bubble columns. Transp Phenom Therm Eng Proc Int Symp 1993; 6th:896–901.Google Scholar

  • 102.

    Thimmapuram PR, Rao NS, Saxena SC. Heat transfer from immersed tubes in a baffled slurry bubble column. Chem Eng Commun 1993;120:27–43.CrossrefGoogle Scholar

  • 103.

    Deckwer, WD, Louisi, Y, Zaidi, A, and Ralek, M. “Hydrodynamics Properties of the Fischer-Tropsch Slurry Process” Ind. Eng. Cem. Process Des. Dev. 1980;19:699–708.CrossrefGoogle Scholar

  • 104.

    Kast W. Analyse des wärmeübergangs in blasensäulen. Int J Heat Mass Transf 1962;5:329–36.CrossrefGoogle Scholar

  • 105.

    Saxena SC, Chen ZD. Hydrodynamics and heat transfer of baffled and unbaffled slurry bubble columns. Rev Chem Eng 1994;10:193–400.Google Scholar

  • 106.

    De SK, Ghosh S, Parichha RK, De P. Gas hold-up in two phase system with internals. Indian Chem Eng Section A 1999;41:T54–8.Google Scholar

  • 107.

    Chen J, Li F, Degaleesan S, Gupta P, Al-Dahhan MH, Dudukovic MP, Toseland BA. Fluid dynamic parameters in bubble columns with internals. Chem Eng Sci 1999;54:2187–97.CrossrefGoogle Scholar

  • 108.

    Larachi F, Desvigne D, Donnat L, Schweich D. Simulating the effects of liquid circulation in bubble columns with internals. Chem Eng Sci 2006;61:4195–206.CrossrefGoogle Scholar

  • 109.

    Yates IC, Satterfield CN. Intrinsic kinetics of the Fischer-Tropsch synthesis on a cobalt catalyst. Energy Fuels 1991;5:168–73.CrossrefGoogle Scholar

  • 110.

    Nosier SA, Mohamed MM. Mass transfer at helical coils in bubble columns. Chem Biochem Eng Q 2004;18:235–39.Google Scholar

  • 111.

    Balamurugan V, Subbaro D. Bubble size and holdup in bubble columns with vibrating internals. AIChE Spring National Meeting, 2006.Google Scholar

  • 112.

    Soraker P, Lian P, Vankan S. WO Patent 2005/065813 A1 (July 21 2005).Google Scholar

  • 113.

    Hawthorne WH, Ibsen MD, Pedersen PS, Bohn MS. US Patent 7,108,835 B2 (Sep. 19, 2006).Google Scholar

  • 114.

    Forret A, Schweitzer JM, Gauthier T, Krishna R, Schweich D. Scale up of slurry bubble reactors. Oil Gas Sci Technol 2006;61:443–58.CrossrefGoogle Scholar

  • 115.

    Youssef AA, Al-Dahhan MH. Impact of internals on the gas holdup and bubble properties of a bubble column. Ind Eng Chem Res 2009;48:8007–13.CrossrefGoogle Scholar

  • 116.

    Saxena SC, Rao NS, Saxena AC. Estimation of heat transfer coefficient for immersed surfaces in bubble columns involving fine powders. Powder Technol 1990;63:197–202.CrossrefGoogle Scholar

  • 117.

    Saxena SC, Rao NS. Estimation of gas holdup in a slurry bubble column with internals: nitrogen–therminol–magnetite system. Powder Technol 1993;75:153–8.CrossrefGoogle Scholar

  • 118.

    Degaleesan S. Turbulence and liquid mixing in bubble columns. PhD Thesis, Washington University, Saint Louis, Missouri, USA, 1997.Google Scholar

  • 119.

    Ong B. Experimental investigation of bubble column hydrodynamics – effect of elevated pressure and superficial gas velocity. PhD Thesis, Washington University, Saint Louis, USA, 2003.Google Scholar

  • 120.

    Han, L. Hydrodynamics, back-mixing, and mass transfer in a slurry bubble column reactor for Fischer-Tropsch alternative fuels, D. Sc. dissertation, Washington University in St. Louis, 2007.Google Scholar

  • 121.

    Westerterp KR, van Swaaij WPM, Beenackers AACM. Chemical reactor design and operation. Chichester: Wiley, 1987.Google Scholar

  • 122.

    Koros RM, Westfield NJ US Patent 5,384,336 (Jan. 24, 1995).Google Scholar

About the article

Published Online: 2013-06-18

Citation Information: International Journal of Chemical Reactor Engineering, Volume 11, Issue 1, Pages 169–223, ISSN (Online) 1542-6580, ISSN (Print) 2194-5748, DOI: https://doi.org/10.1515/ijcre-2012-0023.

Export Citation

©2013 by Walter de Gruyter Berlin / Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Dinesh V. Kalaga, Vishal Bhusare, H.J. Pant, Jyeshtharaj B. Joshi, and Shantanu Roy
International Journal of Chemical Reactor Engineering, 2018, Volume 0, Number 0
Stoyan Nedeltchev, Felix Möller, Uwe Hampel, and Markus Schubert
JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, 2018, Volume 51, Number 4, Page 373
F. Möller, Y.M. Lau, T. Seiler, U. Hampel, and M. Schubert
Chemical Engineering Science, 2018
Dinesh V. Kalaga, Ashutosh Yadav, Sunil Goswami, Vishal Bhusare, Harish J. Pant, Sameer V. Dalvi, Jyeshtharaj B. Joshi, and Shantanu Roy
Chemical Engineering Science, 2017, Volume 170, Page 332
MP Duduković and PL Mills
Current Opinion in Chemical Engineering, 2015, Volume 9, Page 49
Jacqueline V. Erler, Tom Leistner, and Urs A. Peuker
Advances in Chemical Engineering and Science, 2014, Volume 04, Number 02, Page 149
Xiaoping Guan, Zhaoqi Li, Lijun Wang, Youwei Cheng, and Xi Li
Industrial & Engineering Chemistry Research, 2014, Volume 53, Number 42, Page 16529
Ahmed A. Youssef, Mohamed E. Hamed, Muthanna H. Al-Dahhan, and Milorad P. Duduković
Chemical Engineering Research and Design, 2014, Volume 92, Number 9, Page 1637

Comments (0)

Please log in or register to comment.
Log in