Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao

12 Issues per year

IMPACT FACTOR 2017: 0.881
5-year IMPACT FACTOR: 0.908

CiteScore 2017: 0.86

SCImago Journal Rank (SJR) 2017: 0.306
Source Normalized Impact per Paper (SNIP) 2017: 0.503

See all formats and pricing
More options …
Volume 11, Issue 1

Design and Optimization of a Fixed Bed Reactor for Direct Dimethyl Ether Production from Syngas Using Differential Evolution Algorithm

Reza Vakili / Reza Eslamloueyan
Published Online: 2013-06-18 | DOI: https://doi.org/10.1515/ijcre-2012-0026


Dimethyl ether (DME) is traditionally produced by methanol dehydration in an adiabatic reactor. Recently, a more economical method has been proposed to produce DME in a reactor in which methanol production and dehydration take place simultaneously on a bi-functional catalyst. In the present study, the design and optimization of an industrial scale fixed bed reactor for the direct synthesis of DME from syngas are investigated. A steady state, pseudo-homogeneous model has been applied to simulate the proposed reactor. At first, the preliminary design of the reactor is done based on the reactor design heuristics for industrial reactors. Then, using differential evolution (DE) algorithm as a fast and efficient optimization method, the tentative reactor operating conditions and its internal configuration are optimized. The objective of the optimization is to maximize DME production in each tube of the reactor. The number of tubes, feed inlet and coolant water temperatures are considered as decision variables of the optimization algorithm. At the optimum conditions, the reactor size decreases due to increase of CO conversion and DME productivity in each tube. The results show that the proposed optimum reactor is more economical for large-scale production of DME in comparison to the conventional industrial DME reactor.

Keywords: fixed bed reactor; direct dimethyl ether (DME) synthesis; optimization; reactor design; differential evolution (DE)


  • 1.

    Arcoumanis C, Bae C, Crookes R, Kinoshita E. The potential of dimethyl ether (DME) as an alternative fuel for compression-ignition engines: a review. Fuel 2008;87:1014–30.CrossrefWeb of ScienceGoogle Scholar

  • 2.

    Ng KL, Chadwick D, Toseland BA. Kinetics and modelling of dimethyl ether synthesis from synthesis gas. Chem Eng Sci 1999;54:3587–92.CrossrefGoogle Scholar

  • 3.

    Semelsberger TA, Borup RL, Green HL. Dimethyl ether (DME) as an alternative fuel. J Power Sources 2006;156:497–511.Google Scholar

  • 4.

    Galvita VV, Semin GL, Belyaev VD, Yurieva TM, Sobyanin VA. Production of hydrogen from dimethyl ether. Appl Catalyst A 2001;216:85–90.Google Scholar

  • 5.

    Semelsberger TA, Ott KC, Borup RL, Green HL. Role of acidity on the hydrolysis of dimethyl ether (DME) to methanol. Appl Catalyst B 2005;3:281–7.Google Scholar

  • 6.

    Yu JH, Choi JHG, Cho SM. Performance of direct dimethyl ether fuel cells at low temperature. Electrochem Commun 2005;7:1385–8.CrossrefGoogle Scholar

  • 7.

    Sorenson SC. Dimethyl ether in diesel engines: progress and perspectives. J Eng Gas Turbines Power, 2001;123: 652–8.Google Scholar

  • 8.

    Rouhi AM. Amoco, Haldor topsoe develop dimethyl ether as alternative diesel fuel. Chem Eng News 1995;73:37–9.CrossrefGoogle Scholar

  • 9.

    Fleisch TH, Basu A, Gradassi MJ, Masin JG. Dimethyl ether: a fuel for the 21st century. Stud Surface Sci Catalysis 1997;107:117–27.Google Scholar

  • 10.

    Song J, Huang Z, Qiao XQ, Wang WL. Performance of a controllable premixed combustion engine fueled with dimethyl ether. Energy Conv Manage 2004;45:2223–32.CrossrefGoogle Scholar

  • 11.

    Zannis TC, Hountalas DT. DI diesel engine performance and emissions from the oxygen enrichment of fuels with various aromatic content. Energy Fuel 2004;18:659–66.CrossrefGoogle Scholar

  • 12.

    Lu WZ, Teng LH, Xiao WD. Simulation and experiment study of dimethyl ether synthesis from syngas in a fluidized-bed reactor. Chem Eng Sci 2004;59:5455–64.CrossrefGoogle Scholar

  • 13.

    Ge Q, Huang Y, Qiu F, Li S. Bifunctional catalysts for conversion of synthesis gas to DME. Appl Catalyst A 1998;167:23–30.Google Scholar

  • 14.

    Hadipour A, Sohrabi M. Synthesis of some bifunctional catalysts and determination of kinetic parameters for direct conversion of syngas to dimethyl ether. Chem Eng J 2008;137:294–301.Web of ScienceGoogle Scholar

  • 15.

    Marchionna M, Patrini R, Sanfilippo D, Migliavacca G. Fundamental investigations on dimethyl ether (DME) as LPG substitute or make-up for domestic uses. Fuel Process Technol 2008;89:1255–61.Web of ScienceCrossrefGoogle Scholar

  • 16.

    Shikada T, Ohno Y, Ogawa T, Ono M, Mizuguchi M, Tomura K, Fujimoto K. Direct synthesis of dimethyl ether form synthesis gas. Stud Surface Sci Catalysis 1998;119:515–20.Google Scholar

  • 17.

    Raoof F, Taghizadeh M, Eliassi A, Yaripour F. Effects of temperature and feed composition on catalytic dehydration of methanol to dimethyl ether over γ-alumina. Fuel 2008;87:2967–71.Web of ScienceCrossrefGoogle Scholar

  • 18.

    Farsi M, Jahanmiri A, Eslamloueyan R. Modeling and optimization of MeOH to DME in isothermal fixed-bed reactor. Int J Chem Reactor Eng 2010;8:Article A79.CrossrefGoogle Scholar

  • 19.

    Iliuta I, Larachi F, Fongarland P. Dimethyl ether synthesis with in situ H2O removal in fixed-bed membrane reactor: model and simulations. Indus Eng Chem Res 2010;49:6870–7.CrossrefGoogle Scholar

  • 20.

    Lu WZ, Teng LH, Xiao WD. Theoretical analysis of fluidized bed reactor for dimethyl ether synthesis from Syngas. Int J Chem Reactor Eng 2003;1:Article S2.Google Scholar

  • 21.

    Hu Y, Nie Zh, Fang D. Simulation and model design of pipe-shell reactor for the direct synthesis of dimethyl ether from syngas. J Nat Gas Chem 2008;17:195–200.CrossrefGoogle Scholar

  • 22.

    Vakili R, Pourazadi E, Setoodeh P, Eslamloueyan R, Rahimpour MR. Direct dimethyl ether (DME) synthesis through a thermally coupled heat exchanger reactor. Appl Energy 2011;88:1211–23.Web of ScienceCrossrefGoogle Scholar

  • 23.

    Vakili R, Rahimpour MR, Eslamloueyan R. Incorporating differential evolution (DE) optimization strategy to boost hydrogen and DME production rate through a membrane assisted single-step DME heat exchanger reactor. J Nat Gas Sci Eng 2012;9:28–38Web of ScienceCrossrefGoogle Scholar

  • 24.

    Nie Zh, Liu H, Liu D, Ying W, Fang D. Intrinsic kinetics of dimethyl ether synthesis from syngas. J Nat Gas Chem 2005;14:22–8.Google Scholar

  • 25.

    Zhang HT, Cao FH, Liu DH, Fang DY. Thermodynamic analysis for synthesis of dimethyl ether and methanol from syngas. J East China Univ Sci Technol 2001;27:198–201 (in Chinese).Google Scholar

  • 26.

    Song WD, Zhu B Ch., Wang H Sh., Zhu MJ, Sun QW, Zhang JL. Reaction kinetics of methanol synthesis in the presence of C301 Cu-based catalyst (I) model of intrinsic kinetics. J Chem Indus Eng 1988;38:401–8 (in Chinese).Google Scholar

  • 27.

    Babu BV, Munawar SA. Differential evolution strategies for optimal design of shell-and-tube heat exchangers. Chem Eng Sci 2007;62:3720–39.CrossrefWeb of ScienceGoogle Scholar

  • 28.

    Price K, Storn R. Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 1997;11:341–59.Google Scholar

  • 29.

    Price K, Storn R. Homepage of differential evolution as on May, 2006. Available at: http://www.ICSI.Berkeley.edu/∼storn/code.html.

  • 30.

    Graaf GH, Scholtens H, Stamhuis EJ, Beenackers AACM. Intra-particle diffusion limitations in low-pressure methanol synthesis. Chem Eng Sci 1990;45:773–83.CrossrefGoogle Scholar

  • 31.

    McCabe WL, Smith JC, Harriott P. Unit operations of chemical engineering. New York: McGraw Hill, 1995.Google Scholar

  • 32.

    Lindsay AL, Bromley LA. Thermal conductivity of gas mixture. Ind Eng Chem 1950;42:1508–10.CrossrefGoogle Scholar

  • 33.

    Smith JM. Chemical engineering kinetics. New York: McGraw-Hill, 1980.Google Scholar

  • 34.

    Holman JP. Heat transfer. New York: McGraw-Hill, 1989.Google Scholar

  • 35.

    Rezaie N, Jahanmiri A, Moghtaderi B, Rahimpour MR. A comparison of homogeneous and heterogeneous dynamic models for industrial methanol reactors in the presence of catalyst deactivation. Chem Eng Process 2005;44:911–21.CrossrefGoogle Scholar

  • 36.

    Rahimpour MR, Lotfinejad M. A comparison of co-current and counter-current modes of operation for a dual-type industrial methanol reactor. Chem Eng Process 2008;47:1819–30.CrossrefWeb of ScienceGoogle Scholar

  • 37.

    Sinnott RK. An introduction to chemical engineering design, Chemical engineering, volume 6. New York: Pergamon Press, 1989.Google Scholar

  • 38.

    Edgar TF, Himmelblau DM, Lasdon LS. Optimization of chemical processes, 2nd ed. New York: McGraw-Hill Chemical Engineering Series, 2001.Google Scholar

About the article

Published Online: 2013-06-18

Citation Information: International Journal of Chemical Reactor Engineering, Volume 11, Issue 1, Pages 147–158, ISSN (Online) 1542-6580, ISSN (Print) 2194-5748, DOI: https://doi.org/10.1515/ijcre-2012-0026.

Export Citation

©2013 by Walter de Gruyter Berlin / Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Zoltán Till, Tamás Varga, József Réti, and Tibor Chován
Industrial & Engineering Chemistry Research, 2017, Volume 56, Number 18, Page 5352

Comments (0)

Please log in or register to comment.
Log in