Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao

12 Issues per year


IMPACT FACTOR 2017: 0.881
5-year IMPACT FACTOR: 0.908

CiteScore 2017: 0.86

SCImago Journal Rank (SJR) 2017: 0.306
Source Normalized Impact per Paper (SNIP) 2017: 0.503

Online
ISSN
1542-6580
See all formats and pricing
More options …
Volume 11, Issue 2

Issues

Volume 9 (2011)

Volume 8 (2010)

Volume 7 (2009)

Volume 6 (2008)

Volume 5 (2007)

Volume 4 (2006)

Volume 3 (2005)

Volume 2 (2004)

Volume 1 (2002)

Determination of Photochemical, Electrochemical and Photoelectrochemical Efficiencies in a Photoelectrocatalytic Reactor

Javier Marugán
  • Corresponding author
  • Department of Chemical and Environmental Technology, ESCET, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles Madrid, Spain
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rafael van Grieken
  • Department of Chemical and Environmental Technology, ESCET, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles Madrid, Spain
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Cristina Pablos
  • Department of Chemical and Environmental Technology, ESCET, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles Madrid, Spain
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Cristina Adán
  • Department of Chemical and Environmental Technology, ESCET, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles Madrid, Spain
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ruud Timmers
  • Department of Chemical and Environmental Technology, ESCET, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles Madrid, Spain
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-06-20 | DOI: https://doi.org/10.1515/ijcre-2012-0014

Abstract

The relation between the amount of incident photons, absorbed photons, oxidant species, reaction products and electrons in the external circuit should be analyzed individually to determine the step limiting the efficiency of the global photoelectrocatalytic processes. This work discusses the evaluation of three different titania electrodes for the oxidation of methanol in a photoelectrocatalytic reactor. The electrode prepared with three titania coating cycles shows a high efficiency in terms of photochemical (photons to product molecules), electrochemical (product molecules to electrons) and photoelectrochemical (photons to electrons) what explain its high activity for the photoelectrocatalytic oxidation of methanol.

Keywords: photoelectrocatalysis; TiO2 electrode; photonic efficiency; electrochemical efficiency; IPCE

References

  • 1.

    Vinodgopal K, Hotchandani S, Kamat PV. Electrochemically assisted photocatalysis. TiO2 particulate film electrodes for photocatalytic degradation of 4-chlorophenol. J Phys Chem 1993;97:9040–44.Google Scholar

  • 2.

    Kim DH, Anderson MA. Photoelectrocatalytic degradation of formic acid using a porous TiO2 thin film electrode. Environ Sci Technol 1994;28:479–83.Google Scholar

  • 3.

    Egerton TA, Christensen PA, Kosa SA, Onoka B. Photoelectrocatalysis by titanium dioxide for water treatment. Int J Environ Pollut 2006;27:2–19.Google Scholar

  • 4.

    Georgieva J, Armyanov S, Valova E, Poulios I, Sotiropoulos S. Preparation and photoelectrochemical characterisation of electrosynthesised titanium dioxide deposits on stainless steel substrates. Electrochim Acta 2006;51:2076–87.Google Scholar

  • 5.

    Sun L, Bolton JR. Determination of the quantum yield for the photochemical generation of hydroxyl radicals in TiO2 suspensions. J Phys Chem 1996;100:4127–34.Google Scholar

  • 6.

    Byrne JA, Eggins BR, Linquette-Mailley S, Dunlop PS. The effect of hole acceptors on the photocurrent response of particulate TiO2 anodes. Analyst 1998;123:2007–12.Google Scholar

  • 7.

    Mandelbaum PA, Regazzoni AE, Blesa MA, Bilmes SA. Photo-electro-oxidation of alcohols on titanium dioxide thin film electrodes. J Phys Chem B 1999;103:5505–11.Google Scholar

  • 8.

    van Grieken R, Marugán J, Sordo C, Pablos C. Comparison of the photocatalytic disinfection of E. coli suspensions in slurry, wall and fixed-bed reactors. Catal Today 2009;144:48–54.Web of ScienceGoogle Scholar

  • 9.

    van Grieken R, Marugán J, Sordo C, Martínez P, Pablos C. Photocatalytic inactivation of bacteria in water using suspended and immobilized silver-TiO2. Appl Catal B: Environ 2009;93:112–8.Web of ScienceGoogle Scholar

  • 10.

    Braun AM, Maurette MT, Oliveros E. Photochemical technology. Chichester: Wiley, 1991.Google Scholar

  • 11.

    Nash T. The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochem J 1953;55:416–21.Google Scholar

  • 12.

    Marugán J, Hufschmidt D, López-Muñoz MJ, Selzer V, Bahnemann D. Photonic efficiency for methanol photooxidation and hydroxyl radical generation on silica-supported TiO2 photocatalysts. Appl Catal B: Environ 2006;62:201–7.Google Scholar

  • 13.

    Marugán J, Christensen P, Egerton T, Purnama H. Synthesis, characterization and activity of photocatalytic sol–gel TiO2 powders and electrodes. Appl Catal B: Environ 2009;89:273–83.Google Scholar

  • 14.

    Serpone N, Salinaro A. Terminology, relative photonic efficiencies and quantum yields in heterogeneous photocatalysis. Part I: Suggested protocol. Pure Appl Chem 1999;71:303–20.Google Scholar

  • 15.

    Bayarri B, Giménez J, Curcó D, Esplugas S. Direct evaluation of the absorbed photon flow in a photocatalytic reactor by an actinometric method. Chem Eng J 2012;200–2:158–67.Web of ScienceGoogle Scholar

  • 16.

    Imoberdorf GE, Cassano AE, Irazoqui HA, Alfano OM. Optimal design and modeling of annular photocatalytic wall reactors. Catal Today 2007;129:118–26.Web of ScienceGoogle Scholar

  • 17.

    Marugán J, van Grieken R, Cassano AE, Alfano OM. Quantum efficiency of cyanide photooxidation with TiO2/SiO2 catalysts: multivariate analysis by experimental design. Catal Today 2007;129:143–51.Web of ScienceGoogle Scholar

  • 18.

    Kulėšius Z, Ancutienė I, Valatka E. Kinetics of photoelectrochemical oxidation of some aliphatic alcohols using TiO2 and Ag/TiO2 coatings on stainless steel. Chem Technol 2009;2:69–74.Google Scholar

About the article

Published Online: 2013-06-20


Citation Information: International Journal of Chemical Reactor Engineering, Volume 11, Issue 2, Pages 787–797, ISSN (Online) 1542-6580, ISSN (Print) 2194-5748, DOI: https://doi.org/10.1515/ijcre-2012-0014.

Export Citation

©2013 by Walter de Gruyter Berlin / Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Xiangchao Meng, Zisheng Zhang, and Xingang Li
Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2015, Volume 24, Page 83

Comments (0)

Please log in or register to comment.
Log in