Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao

IMPACT FACTOR 2017: 0.881
5-year IMPACT FACTOR: 0.908

CiteScore 2017: 0.86

SCImago Journal Rank (SJR) 2017: 0.306
Source Normalized Impact per Paper (SNIP) 2017: 0.503

See all formats and pricing
More options …
Volume 11, Issue 2


Volume 17 (2019)

Volume 9 (2011)

Volume 8 (2010)

Volume 7 (2009)

Volume 6 (2008)

Volume 5 (2007)

Volume 4 (2006)

Volume 3 (2005)

Volume 2 (2004)

Volume 1 (2002)

Solar Water Disinfection Using NF-codoped TiO2 Photocatalysis: Estimation of Scaling-up Parameters

Jordana H. Castillo
  • Corresponding author
  • Grupo de investigación en Energía y Ambiente, Universidad de las Américas, Puebla, Sta. Catarina Mártir, Cholula 72810 Puebla, Mexico
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alba Bueno
  • Grupo de investigación en Energía y Ambiente, Universidad de las Américas, Puebla, Sta. Catarina Mártir, Cholula 72810 Puebla, Mexico
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Miguel A. Pelaez / Jose Luis Sanchez-Salas
  • Grupo de investigación en Energía y Ambiente, Universidad de las Américas, Puebla, Sta. Catarina Mártir, Cholula 72810 Puebla, Mexico
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dionysios D. Dionysiou / Erick R. Bandala
  • Grupo de investigación en Energía y Ambiente, Universidad de las Américas, Puebla, Sta. Catarina Mártir, Cholula 72810 Puebla, Mexico
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-06-20 | DOI: https://doi.org/10.1515/ijcre-2012-0051


In this work, the use of previously reported figures-of-merit is proposed for the comparison of solar-driven photocatalytic disinfection technologies using NF-codoped TiO2. These figures-of-merit are based on the solar collection area per order (ACO) through the understanding of the overall kinetic behavior of the disinfection process under the tested conditions: pH 7, four different catalyst concentrations (0.0, 0.10, 0.25 and 50 mgmL 1) and two solar radiation types (UV+visible and visible radiation alone). The results provide a direct link to the accumulated energy efficiency (the lowest the value the highest the efficiency) of the inactivation process, allowing the comparison between the efficiencies of a broad range of processes evaluating different experimental conditions.

Keywords: photocatalytic disinfection; doped titanium dioxide; scaling-up parameters; advanced oxidation technologies


  • 1.

    Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Mariñas BJ, Mayes AM. Science and technology for water purification in the coming decades. Nature 2008;452:302–10.Web of ScienceGoogle Scholar

  • 2.

    Sichel C, Tello J, de Cara M, Fernandez-Ibañez P. Effect of UV solar intensity and dose on the photocatalytic disinfection of bacteria and fungi. Catal Today 2007;12:152–60.Web of ScienceCrossrefGoogle Scholar

  • 3.

    Pelaez M, de la Cruz AA, Stathatos E, Falaras P, Dionysiou DD. Visible light-activated N-F-codoped TiO2 nanoparticles for the photocatalytic degradation of microcystin-LR in water. Catal Today 2009;144:19–25.Google Scholar

  • 4.

    Pelaez M, Nolan N, Pillai S, Seery M, Falaras P, Athanassios K, et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B Environ 2012;125:331–49.Web of ScienceGoogle Scholar

  • 5.

    Bandala ER, Corona-Vasquez B, Guisar R, Uscanga M. Deactivation of highly resistant microorganisms in water using solar driven photocatalytic processes. Int J Chem Reactor Eng 2009;7:1–16.Google Scholar

  • 6.

    Bandala ER, Gonzalez L, De la Hoz F, Pelaez M, Dionysiou DD, Dunlop PSM, et al. Application of azo dyes as dosimetric indicators for enhanced photocatalytic solar disinfection (ENPHOSODIS). J Photochem Photobiol A Chem 2011;218:185–91.Web of ScienceGoogle Scholar

  • 7.

    Bandala ER, Perez R, Velez-Lee AE, Sanchez-Salas JL, Quiroz MA, Mendez-Rojas MA. Bacillus subtilis spore inactivation in water using photo-assisted Fenton reactions. Sustain Environ Res 2011;21:285–90.Google Scholar

  • 8.

    Bandala ER, González L, Sanchez-Salas JL, Castillo JH. Inactivation of Ascaris eggs in water using sequential solar driven photo-Fenton and free chlorine. J Water Health 2012;10:20–30.Web of SciencePubMedCrossrefGoogle Scholar

  • 9.

    Muranyi P, Scrami C, Wunderlich J. Antimicrobial efficiency of titanium dioxide-coated surfaces. J Appl Microbiol 2009;108:1966–73.Web of ScienceGoogle Scholar

  • 10.

    Popa M, Diamandescu L, Vasiliu F, Teodorescu CM, Cosoceanu V, Baia M, et al. Synthesis, structural characterization, and photocatalytic properties of iron-doped TiO2 aerogels. J Mater Sci 2009;44:358–64.Google Scholar

  • 11.

    Rincón AG, Pulgarín C. Photocatalytical inactivation of E. coli effect of (continuous-intermittent) light intensity and of (suspended-fixed) TiO2 concentration. Appl Catal 2003;44:263–84.Google Scholar

  • 12.

    Li Q, Xie R, Li YW, Mintz E, Shang JK. Enhanced visible-light-induced photocatalytic disinfection of E. coli by carbon sensitized nitrogen- doped titanium oxide. Environ Sci Technol 2007;41:5050–6.Web of ScienceGoogle Scholar

  • 13.

    Castillo-Ledezma, JH, Sánchez, JL, López-Malo A, Bandala, ER. Effect of pH, solar irradiation, and semiconductor concentration on the photocatalytic disinfection of Escherichia coli in water using nitrogen-doped TiO2. Eur Food Res Technol 2011;233:825–34.Web of ScienceGoogle Scholar

  • 14.

    Choi H, Antoniou MG, Pelaez M, de la Cruz AA, Shoemaker JA, Dionysiou DD. Mesoporous nitrogen-doped TiO2 for the photocatalytic destruction of the cyanobacterial toxin microcystin-LR under visible light. Environ Sci Technol 2007;41:7530–5.Web of ScienceGoogle Scholar

  • 15.

    Emeline AV, Kuznetsov VN, Rybchuk VK, Serpone N. Visible-light-active titania photocatalysts: the case of N-doped TiO2s-properties and some fundamental issues. Int J Photoenergy 2008;Article ID 258394:1–19.Web of ScienceGoogle Scholar

  • 16.

    Reginfo-Herrera JA, Mielczarski E, Mielczarski J, Castillo NC, Kiwi J, Pulgarin C. Escherichia coli inactivation by N, S co-doped commercial TiO2 powders under UV and visible light. Appl Catal B Environ 2008;84:448–56.Web of ScienceGoogle Scholar

  • 17.

    Karunakaran C, Abiramasundaran G, Gomathisankar P, Manikandan G, Anandi V. Cu-doped TiO2 nanoparticles for photocatalytic disinfection of bacteria under visible light. J Colloid Interface Sci 2010;352:68–74.Web of ScienceGoogle Scholar

  • 18.

    Zhang D, Li G, Yu JC. Inorganic materials for photocatalytic water disinfection. J Mater Chem 2010;20:4529–36.CrossrefGoogle Scholar

  • 19.

    Byrne JA, Fernández-Ibañez PA, Dunlop PS, Alrousan DM, Hamilton JW. Photocatalytic enhancement for the solar disinfection of water: a review. Int J Photoenergy 2011. DOI:10.1155/2011/798051.CrossrefWeb of ScienceGoogle Scholar

  • 20.

    Fernández P, Blanco J, Sichel C, Malato S. Water disinfection by solar photocatalysis using compound parabolic collectors. Catal Today 2005;101:345–56.Google Scholar

  • 21.

    Bolton J, Bircher K, Tumas W, Chadwick T. Figures-of-merit for the technical development and application of advanced oxidation technologies for both electric- and solar-driven systems. Pure Appl Chem 2001;73:627–37.Google Scholar

  • 22.

    Davies CM, Roser DJ, Feitz AJ, Ashbolt NJ. Solar radiation disinfection of drinking water at temperate latitudes: inactivation rates for an optimized reactor configuration. Water Res 2009;43:643–52.Web of ScienceGoogle Scholar

  • 23.

    Rodrigues CP, Ziolli RL, Guimaraes JR. Inactivation of escherichia coli in water by TiO2-assisted disinfection using solar light. J Braz Chem Soc 2007;18:126–34.Web of ScienceGoogle Scholar

  • 24.

    Venkata K, Subrahmanyam M, Boule P. Immobilized TiO2 photocatalyst during long-term use: decrease of its activity. Appl Catal 2004;49:239–49.Google Scholar

About the article

Published Online: 2013-06-20

Citation Information: International Journal of Chemical Reactor Engineering, Volume 11, Issue 2, Pages 701–708, ISSN (Online) 1542-6580, ISSN (Print) 2194-5748, DOI: https://doi.org/10.1515/ijcre-2012-0051.

Export Citation

©2013 by Walter de Gruyter Berlin / Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in