Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao

IMPACT FACTOR 2018: 1.059
5-year IMPACT FACTOR: 1.156

CiteScore 2018: 1.04

SCImago Journal Rank (SJR) 2018: 0.292
Source Normalized Impact per Paper (SNIP) 2018: 0.520

See all formats and pricing
More options …
Volume 11, Issue 2


Volume 9 (2011)

Volume 8 (2010)

Volume 7 (2009)

Volume 6 (2008)

Volume 5 (2007)

Volume 4 (2006)

Volume 3 (2005)

Volume 2 (2004)

Volume 1 (2002)

Correlations between Molecular Descriptors from Various Volatile Organic Compounds and Photocatalytic Oxidation Kinetic Constants

Cécile Raillard / Valérie Héquet / Bifen Gao / Heyok Choi / Dionysios D. Dionysiou / Arnaud Marvilliers / Bertrand Illien
Published Online: 2013-06-20 | DOI: https://doi.org/10.1515/ijcre-2012-0052


The photocatalytic oxidation of seven typical indoor volatile organic compounds (VOCs) is experimentally investigated using novel nanocrystalline TiO2 dip-coated catalysts. Not only the role of hydrophilicity of the reactants but also other physico-chemical properties and molecular descriptors are studied and related to kinetic and equilibrium constants. The main objective of this work consists in establishing simple relationships that will be useful to deepen the understanding of gas-phase heterogeneous photocatalytic mechanisms and for the prediction of degradation rates of these VOCs using an indoor air treatment process.

Keywords: photocatalytic oxidation; molecular modeling; quantitative structure–activity relation (QSAR)


  • 1.

    Bernstein JA, Alexis N, Bacchus H, Bernstein IL, Fritz P, Horner E, et al. The health effects of nonindustrial indoor air pollution. J Allergy Clin Immunol 2008;121:585–91.Web of ScienceGoogle Scholar

  • 2.

    Salthammer T. Critical evaluation of approaches in setting indoor air quality guidelines and reference values. Chemosphere 2011;82:1507–17.Web of ScienceGoogle Scholar

  • 3.

    Pichat P, Disdier J, Hoang-Van C, Mas D, Goutailler G, Gaysse C. Purification/deodorization of indoor air and gaseous effluents by TiO2 photocatalysis. Catal Today 2000;63:363–9.Google Scholar

  • 4.

    Zhao J, Yang X. Photocatalytic oxidation for indoor air purification: a literature review. Building Environ 2003;38:645–54.CrossrefGoogle Scholar

  • 5.

    Kim SB, Hong SC. Kinetic study for photocatalytic degradation of volatile organic compounds in air using thin film TiO2 photocatalyst. Appl Catal B: Environ 2002;35:305–15.CrossrefGoogle Scholar

  • 6.

    Raillard C, Héquet V, Le Cloirec P, Legrand J. TiO2 coating type influencing the role of water on the photocatalytic oxidation of methyl ethyl ketone in the gas phase. Appl Catal B: Environ 2005;59:213–20.Google Scholar

  • 7.

    Watanabe T, Nakajima A, Wang R, Minabe M, Koizumi S, Fujishima A, Hashimoto K. Photocatalytic activity and photoinduced hydrophilicity of titanium dioxide coated glass. Thin Solid Films 1999;351:260–3.Google Scholar

  • 8.

    Fujishima A, Rao TN, Tryk DA. Titanium dioxide photocatalysis. J Photochem Photobiol C: Photochem Rev 2000;1:1–21.Google Scholar

  • 9.

    Kemmitt T, Al-Salim NI, Waterland M, Kennedy VJ, Markwitz A. Photocatalytic titania coatings. Curr Appl Phys 2004;4:189–92.CrossrefGoogle Scholar

  • 10.

    Nuida T, Kanai N, Hashimoto K, Watanabe T, Ohsaki H. Enhancement of photocatalytic activity using UV light trapping effect. Vacuum 2004;74:729–33.CrossrefGoogle Scholar

  • 11.

    Guan K. Relationship between photocatalytic activity, hydrophilicity and self-cleaning effect of TiO2/SiO2 films. Surf Coat Technol 2005;191:155–60.Google Scholar

  • 12.

    Pichat P. Some views about indoor air photocatalytic treatment using TiO2: conceptualization of humidity effects, active oxygen species, problem of C1–C3 carbonyl pollutants. Appl Catal B: Environ 2010;99:428–34.Web of ScienceGoogle Scholar

  • 13.

    Raillard C, Héquet V, Le Cloirec P. Influence of aqueous solubility of various VOCs on their photocatalytic degradation. J Adv Oxid Technol 2007;10:101–6.Google Scholar

  • 14.

    Yu K-P, Lee GW, Huang W-M, Wu C, Yang S. The correlation between photocatalytic oxidation performance and chemical/physical properties of indoor volatile organic compounds. Atmos Environ 2006;40:375–85.CrossrefGoogle Scholar

  • 15.

    Hodgson AT, Destaillats H, Sullivan DP, Fisk WJ. Performance of ultraviolet photocatalytic oxidation for indoor air cleaning applications. Indoor Air 2007;17:305–16.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 16.

    D’Oliveira J-C, Minero C, Pelizetti E, Pichat P. Photodegradation of dichlorophenols and trichlorophenols in TiO2 aqueous suspensions: kinetic effects of the positions of the Cl atoms and identification of the intermediates. J Photochem Photobiol A: Chem 1993;72:261–7.Google Scholar

  • 17.

    Amalric L, Guillard C, Blanc-Brude E, Pichat P. Correlation between the photocatalytic degradability over TiO2 in water of meta and para substituted methoxybenzenes and their electron density, hydrophobicity and polarisability properties. Water Res 1996;30:1137–42.CrossrefGoogle Scholar

  • 18.

    San N, Hatipoğlu A, Koçtürk G, Çinar Z. Photocatalytic degradation of 4-nitrophenol in aqueous TiO2 suspensions: theoretical prediction of the intermediates. J Photochem Photobiol A: Chem 2002;146:189–97.Google Scholar

  • 19.

    Parra S, Olivero J, Pulgarin C. Relationships between physicochemical properties and photoreactivity of four biorecalcitrant phenylurea herbicides in aqueous TiO2 suspension. Appl Catal B: Environ 2002;36:75–85.CrossrefGoogle Scholar

  • 20.

    Fogler HS. Eds. Elements of chemical reaction engineering, 2nd ed. Prentice-Hall PTR: Upper Saddle River, 1992.Google Scholar

  • 21.

    Choi H, Stathatos E, Dionysiou DD. Synthesis of nanocrystalline photocatalytic TiO2 thin films and particles using sol-gel method modified with non-ionic surfactants. Thin Solid Films 2006;510:107–14.Google Scholar

  • 22.

    Raillard C, Héquet V, Le Cloirec P, Legrand J. Kinetic study of ketones photocatalytic oxidation in gas phase using TiO2-containing paper: effect of water vapor. J Photochem Photobiol A: Chem 2004;163:425–31.Google Scholar

  • 23.

    Maudhuit A, Raillard C, Héquet V, Le Coq L, Sablayrolles J, Molins L. Adsorption phenomena in photocatalytic reactions: the case of toluene, acetone and heptane. Chem Eng J 2011;170:464–70.Google Scholar

  • 24.

    Sauer ML, Ollis DF. Acetone oxidation in a photocatalytic monolith reactor. J Catal 1994;149:81–91.Google Scholar

  • 25.

    Frisch MJ, et al. Gaussian 03 rev. E01. Wallingford, CT: Gaussian, Inc., 2004.Google Scholar

  • 26.

    Le Guennec M, Evain K, Illien B. Calculation of static mean polarisability and polarisability anisotropy. Statistical comparison with the results of gases and influence of the geometrical parameters. J Mol Struct (Theochem) 2001;542:167–76.Google Scholar

  • 27.

    Pearson RG. Absolute electronegativity and absolute hardness of Lewis acids and bases. J Am Chem Soc 1985;107:6801–6.Google Scholar

  • 28.

    Wong MW, Wiberg KB, Frisch MJ. Ab initio calculation of molar volumes: comparison with experiment and use in solvation models. J Comput Chem 1995;16:385–394.CrossrefGoogle Scholar

  • 29.

    Jensen F. Introduction to computational chemistry. Chichester, England: Wiley, 2007.Google Scholar

  • 30.

    Yalkowski SH, He Y. Handbook of aqueous solubility data. Boca Raton, Florida, United States of America: CRC Press, 2003.Google Scholar

  • 31.

    Atkinson R. Gas-phase tropospheric chemistry of organic compounds: a review. Atmos Environ 2007;41:200–40.CrossrefGoogle Scholar

  • 32.

    Staudinger J, Roberts PV. A critical compilation of Henry’s law constant temperature dependence relations for organic compounds in dilute aqueous solutions. Chemosphere 2001;44:561–76.Google Scholar

  • 33.

    Yaws CL, Yang H-C. Henry’s law constant for compound in water. In: Yaws CL, editor. Thermodynamic and physical property data. Houston, TX: Gulf Publishing Company, 1992:181–206.Google Scholar

  • 34.

    Boulamanti AK, Philippopoulos CJ. Photocatalytic degradation of C5-C7 alkanes in the gas-phase. Atmos Environ 2009;43:3168–74.Web of ScienceCrossrefGoogle Scholar

  • 35.

    Joung S-K, Amemiya T, Murabayashi M, Cai R, Itoh K. Chemical adsorption of phosgene on TiO2 and its effect on the photocatalytic oxidation of trichloroethylene. Surf Sci 2005;598:174–84.Google Scholar

  • 36.

    Thanikaivelan P, Subramanian V, Raghava Rao J, Nair BU. Application of quantum chemical descriptor in quantitative structure activity and structure property relationship. Chem Phys Lett 2000;323:59–70.Google Scholar

  • 37.

    Obee TN, Brown RT. TiO2 photocatalysis for indoor air applications: effects of humidity and trace contaminant levels on the oxidation rates of formaldehyde, toluene and 1,3-butadiene. Environ Sci Technol 1995;29:1223–31.Google Scholar

  • 38.

    Obee TN, Hay SO. The estimation of photocatalytic rate constants based on molecular structure: extending to multi-component systems. J Adv Oxid Technol 1999;4:147–52.Google Scholar

  • 39.

    Zorn ME, Hay SO, Anderson MA. Effect of molecular functionality on the photocatalytic oxidation of gas-phase mixtures. Appl Catal B: Environ 2010;99:420–7.Web of ScienceGoogle Scholar

About the article

Published Online: 2013-06-20

Citation Information: International Journal of Chemical Reactor Engineering, Volume 11, Issue 2, Pages 799–813, ISSN (Online) 1542-6580, ISSN (Print) 2194-5748, DOI: https://doi.org/10.1515/ijcre-2012-0052.

Export Citation

©2013 by Walter de Gruyter Berlin / Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Zhao-hui Luo, Chuan-ling Wei, Nan-nan He, Zhi-guo Sun, Hui-xin Li, and Dan Chen
Journal of Nanomaterials, 2015, Volume 2015, Page 1

Comments (0)

Please log in or register to comment.
Log in