Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao

IMPACT FACTOR 2018: 1.059
5-year IMPACT FACTOR: 1.156

CiteScore 2018: 1.04

SCImago Journal Rank (SJR) 2018: 0.292
Source Normalized Impact per Paper (SNIP) 2018: 0.520

See all formats and pricing
More options …
Volume 11, Issue 2


Volume 9 (2011)

Volume 8 (2010)

Volume 7 (2009)

Volume 6 (2008)

Volume 5 (2007)

Volume 4 (2006)

Volume 3 (2005)

Volume 2 (2004)

Volume 1 (2002)

Enhanced Antibacterial Activity of CeO2 Nanoparticles by Surfactants

Rosalia Cuahtecontzi-Delint / Miguel A Mendez-Rojas / Erick R Bandala / Marco A Quiroz / Sonia Recillas / Jose Luis Sanchez-Salas
Published Online: 2013-06-20 | DOI: https://doi.org/10.1515/ijcre-2012-0055


CeO2 nanoparticles (NPs) were tested to assess their toxicity on Escherichia coli strain in the presence of non-ionic surfactants. The NPs were dispersed in water by sonication at different pH values and times then mixed with three different surfactants (i.e., Triton X-100, Polyvinyl Pyrrolidone (PVP) and Tween 80) with a concentration of 0.001% v/v. It was found that sonication favored dispersion of the material and produced particles having 100 nm sizes in average. The material show toxicity to E. coli at pH 7 when growth using only minimal M9 media; no toxic response was observed for bacteria growth in rich media. The toxic effect in minimal media was enhanced by adding any of the non-ionic surfactants to the media. The use of CeO2 plus surfactant decreased the minimal inhibitory concentration (MIC) value of E. coli. The highest effect was observed for addition of Tween 80, in this case MIC value was 0.150 mg mL1 compared to 3 mg mL1 of CeO2 alone (almost 20 times improvement). These findings suggest the importance of different substances that can interact with NPs, like surfactants, usually present in wastewater systems that may lead to undesirable unexpected toxic characteristics in materials usually considered as innocuous.

Keywords: CeO2; antibacterial; surfactants; nanoparticles; nanotoxicology


  • 1.

    Laha SC, Ryoo R. Synthesis of thermally stable mesoporous cerium oxide with nanocrystalline frameworks using mesoporous silica templates. Chem Commun 2003;17:2138–9.CrossrefGoogle Scholar

  • 2.

    Kuiry SC, Patil S, Deshpande S, Seal S. Spontaneous self-assembly of cerium oxide nanoparticles to nanorods through supraaggregate formation. J Phys Chem B 2005; 109:6936–9.PubMedCrossrefGoogle Scholar

  • 3.

    Chane-Ching JY, Airiau M, Sahibed-dine A, Daturi M, Brendle E, Ozil F, et al. Surface characterization and properties of ordered arrays of CeO2 nanoparticles embedded in thin layers of SiO2. Langmuir 2005;21:1568–74.CrossrefGoogle Scholar

  • 4.

    Rodea-Palomares I, Boltes K, Fernandez-Pias F, Leganes F, Garcıa-Calvo E, Santiago J, et al. Physicochemical characterization and ecotoxicological assessment of CeO2 nanoparticles using two aquatic microorganisms. Toxicol Sci 2011;119:135–45.Web of ScienceCrossrefGoogle Scholar

  • 5.

    Handy RD, Owen R, Valsami-Jones E. The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxicology 2008;17:315–25.CrossrefWeb of SciencePubMedGoogle Scholar

  • 6.

    Xia T, Kovochich M, Liong M, Madler L, Gilbert B, Shi H, et al. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2008;28:2121–34.Web of ScienceCrossrefGoogle Scholar

  • 7.

    Park EJ, Choi J, Park YK, Park K. Oxidative stress induced by cerium oxide nanoparticles in cultured BEAS-2B cells. Toxicology 2008b;245:90–100.Google Scholar

  • 8.

    Das M, Patill S, Bhargava N, Kang JF, Riedel LM, Seal S, et al. Auto-catalytic ceria nanoparticles offer neuroprotection to adult rat spinal cord neurons. Biomaterials 2007;28:1918–2925.CrossrefWeb of SciencePubMedGoogle Scholar

  • 9.

    Olivier JC. Drug transport to brain with targeted nanoparticles. NeuroRx 2005;2:108–19.PubMedCrossrefGoogle Scholar

  • 10.

    Park B, Donaldson K, Duffin R, Tran L, Kelly F, Mudway I, et al. Hazard and risk assessment of a nanoparticulate cerium oxide-based diesel fuel additive a case study. Inhalation Toxicol 2008a;20:547–66.Web of ScienceCrossrefGoogle Scholar

  • 11.

    Roh JY, Park YK, Choi J. Ecotoxicological investigation of CeO2 and TiO2 nanoparticles on the soil nematode Caenorhabditis elegans using gene expression, growth, fertility, and survival as endpoints. Environ Toxicol Pharmacol 2010;29:167–72.CrossrefWeb of ScienceGoogle Scholar

  • 12.

    Rogers NJ, Franklin NM, Apte SC, Batley GE, Angel BM, Lead JR, et al. Physico-chemical behaviour and algal toxicity of nanoparticulate CeO2 in freshwater. Environ Chem 2010;7:50–60.CrossrefWeb of ScienceGoogle Scholar

  • 13.

    Van Hoecke K, Quik JT, Mankiewicz-Boczek J, De Schamphelaere KA, Elsaesser A, Van der Meeren P, et al. Fate and effects of CeO2 nanoparticles in aquatic ecotoxicity tests. Environ Sci Technol 2009;43:4537–46.Web of ScienceCrossrefGoogle Scholar

  • 14.

    Thill A, Zeyons O, Spalla O, Chauvat F, Rose J, Auffan M, Flank AM. Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism. Environ Sci Technol 2006;40:6151–6.CrossrefGoogle Scholar

  • 15.

    Zeyons O, Thill A, Chauvat F, Menguy N, Cassier-Chauvatb C, Oreacutear C, et al. Direct and indirect CeO2 nanoparticles toxicity for Escherichia coli and Synechocystis. Nanotoxicology 2009;3:284–95.CrossrefGoogle Scholar

  • 16.

    Clift MJ, Varet J, Hankin SM, Brownlee B, Davidson AM, Brandenberger C. Quantum dot cytotoxicity in vitro: an investigation into the cytotoxic effects of a series of different surface chemistries and their core/shell materials. Nanotoxicology 2011;5:664–74.Web of ScienceCrossrefGoogle Scholar

  • 17.

    Jiao J. Polyoxyethylated nonionic surfactants and their applications in topical ocular drug delivery. Adv Drug Delivery Rev 2008;60:1663–73.CrossrefWeb of ScienceGoogle Scholar

  • 18.

    Zhang F, Jin Q, Chan SW. Ceria nanoparticles: size, size distribution, and shape. J Appl Phys 2004;95:4319–26.CrossrefGoogle Scholar

  • 19.

    Robins-Brown RM, Gaspar MN, Ward JI, Wachsmuth IK, Koornhof HJ, Jacobs MR, et al. Resistance mechanisms of multiply resistant pneumococci: antibiotic degradation studies. Antimicrobial Agents Chemotherapy 1979;15:470–4.CrossrefGoogle Scholar

  • 20.

    Kim YS, Seo JH, Cha HJ. Enhancement of heterologous protein expression in Escherichia coli by co-expression of nonspecific DNA-binding stress protein, Dps. Enzyme Micro Technol 2003;33:460–5.CrossrefGoogle Scholar

  • 21.

    Patil S, Sandberg A, Heckert E, Self W, Seal S. Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential. Biomaterials 2007;28:4600–7.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 22.

    O’Sullivan SM, Woods JA, O’Brien NM. Use of Tween 40 and Tween 80 to deliver a mixture of phytochemicals to human colonic adenocarcinoma cell (CaCo-2) monolayers. Brit J Nutr 2004;91:757–64.Google Scholar

  • 23.

    Pelletier DA, Suresh AK, Holton GA, McKeown CK, Wang W, Gu B, Mortensen NP, Allisosn DP, Joy DC, Allison MR, Brown SD, Phelps TJ, Doktycz MJ App Environ Microbiol 2010;76: 7981–7989.Google Scholar

  • 24.

    Chen J, Patil S, Seal S, McGinis JF. Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides. Nat Nanotechnol 2006;1:142–50.PubMedCrossrefGoogle Scholar

  • 25.

    Jeng HA, Swanson J. Toxicity of metal oxide nanoparticles in mammalian cells. J Environ Sci Health Part A 2006;41:2699–711.CrossrefGoogle Scholar

  • 26.

    Frazzini V, Rockabrand E, Mocchegiani E, Sensi SL. Oxidative stress and brain aging: is zinc the link. Biogerontology 2006;7:307–14.CrossrefPubMedGoogle Scholar

  • 27.

    Brown AM, Kristal BS, Effron MS, Shestopalov AI, Ullucci PA, Sheu KF, et al. Zn2+ inhibits alpha-ketoglutarate-stimulated mitochondrial respiration and the isolated alpha-ketoglutarate dehydrogenase complex. J Biol Chem 2000;275:13441–7.Web of ScienceGoogle Scholar

  • 28.

    Schubert D, Dargush R, Raitano J, Chan S. Cerium and uttrium oxide nanoparticles are neuroprotective. Biochem Biophys Res Commun 2006;342:86–91.Google Scholar

About the article

Published Online: 2013-06-20

Citation Information: International Journal of Chemical Reactor Engineering, Volume 11, Issue 2, Pages 781–785, ISSN (Online) 1542-6580, ISSN (Print) 2194-5748, DOI: https://doi.org/10.1515/ijcre-2012-0055.

Export Citation

©2013 by Walter de Gruyter Berlin / Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Mengzhen Zhang, Chao Zhang, Xinyun Zhai, Feng Luo, Yaping Du, and Chunhua Yan
Science China Materials, 2019
Isabela Albuquerque Passos Farias, Carlos Christiano Lima dos Santos, and Fábio Correia Sampaio
BioMed Research International, 2018, Volume 2018, Page 1
Ece Alpaslan, Benjamin M. Geilich, Hilal Yazici, and Thomas J. Webster
Scientific Reports, 2017, Volume 7, Page 45859

Comments (0)

Please log in or register to comment.
Log in