Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao

12 Issues per year


IMPACT FACTOR 2017: 0.881
5-year IMPACT FACTOR: 0.908

CiteScore 2017: 0.86

SCImago Journal Rank (SJR) 2017: 0.306
Source Normalized Impact per Paper (SNIP) 2017: 0.503

Online
ISSN
1542-6580
See all formats and pricing
More options …
Volume 12, Issue 1

Issues

Volume 9 (2011)

Volume 8 (2010)

Volume 7 (2009)

Volume 6 (2008)

Volume 5 (2007)

Volume 4 (2006)

Volume 3 (2005)

Volume 2 (2004)

Volume 1 (2002)

Simulation of CO Preferential Oxidation (COPrOx) Monolithic Reactors

Leandro G. Jeifetz
  • Department of Chemical Engineering, Laboratorio de Procesos Catalíticos, DIQ-FI, Universidad de Buenos Aires, Pabellón de Industrias, Ciudad Universitaria, Buenos Aires 1428, Argentina
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Pablo Daniel Giunta
  • Corresponding author
  • Department of Chemical Engineering, Laboratorio de Procesos Catalíticos, DIQ-FI, Universidad de Buenos Aires, Pabellón de Industrias, Ciudad Universitaria, Buenos Aires 1428, Argentina
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Fernando J. Mariño
  • Department of Chemical Engineering, Laboratorio de Procesos Catalíticos, DIQ-FI, Universidad de Buenos Aires, Pabellón de Industrias, Ciudad Universitaria, Buenos Aires 1428, Argentina
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Norma E. Amadeo
  • Department of Chemical Engineering, Laboratorio de Procesos Catalíticos, DIQ-FI, Universidad de Buenos Aires, Pabellón de Industrias, Ciudad Universitaria, Buenos Aires 1428, Argentina
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Miguel Á. Laborde
  • Department of Chemical Engineering, Laboratorio de Procesos Catalíticos, DIQ-FI, Universidad de Buenos Aires, Pabellón de Industrias, Ciudad Universitaria, Buenos Aires 1428, Argentina
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-01-11 | DOI: https://doi.org/10.1515/ijcre-2013-0071

Abstract

In this work, a COPrOx monolithic reactor with a CuO/CeO2/Al2O3 catalytic washcoat was modelled to purify a H2 stream for a 2 kW PEM fuel cell. Preliminary simulations included isothermal monoliths operating between 423 and 463 K, and the optimization of linear axial temperature profiles. For a fixed total system size and a desired CO outlet molar fraction lower than 20 ppm, an isothermal temperature profile maximized the global selectivity towards CO oxidation. Then, different schemes of adiabatic monoliths with interstage cooling were modelled and evaluated. It was found that wide operating temperature ranges lower the necessary number of stages, but decrease the global selectivity and rise system sensitivity to inlet temperatures. A 1D heterogeneous model was used to simulate the monoliths.

Keywords: monolithic reactor; modelling; COPrOx; PEM fuel cell; heat exchange

References

  • 1.

    Giunta P, Amadeo N, Laborde M. Simulation of a low temperature water gas shift reactor using the heterogeneous model. Application to a PEM fuel cell. J Power Sources 2006;156:489–96.CrossrefGoogle Scholar

  • 2.

    Ayastuy J, Gil–Rodriguez A, Gonzalez–Marcos M, Gutierrez–Ortiz M. Effect of process variables on Pt/CeO2 catalyst behaviour for the PROX reaction. Int J Hyd Energy 2006;31:2231–42.CrossrefGoogle Scholar

  • 3.

    Sirijaruphan A, Goodwin J, Rice R. Effect of temperature and pressure on the surface kinetic parameters of Pt/γ-Al2O3 during selective CO oxidation. J Catal 2004;227:547–51.CrossrefGoogle Scholar

  • 4.

    Lopez E, Kolios G, Eigenberger G. Preferential oxidation of CO in a folded–plate reactor. Chem Eng Sci 2007;62:5598–601.CrossrefGoogle Scholar

  • 5.

    Echigo M, Shinke N, Takami S, Higashiguchi S, Hirai K, Tabata T. Development of residential PEFC cogeneration systems: Ru catalyst for CO preferential oxidation in reformed gas. Catal Today 2003;84:209–15.CrossrefGoogle Scholar

  • 6.

    Moreno M, Baronetti G, Laborde M, Mariño F. Kinetics of preferential CO oxidation in H2 excess (COPrOx) over CuO/CeO2 catalysts. Int J Hyd Energy 2008;33:3538–42.CrossrefGoogle Scholar

  • 7.

    Sedmak G, Hocevar S, Levec J. Kinetics of selective CO oxidation in excess of H2 over the nanostructured Cu0.1Ce0.9O2−y catalyst. J Catal 2003;213:135–50.CrossrefGoogle Scholar

  • 8.

    Lee H, Kim D. Kinetics of CO and H2 oxidation over CuO–CeO2 catalyst in H2 mixtures with CO2 and H2O. Catal Today 2008;132:109–16.CrossrefGoogle Scholar

  • 9.

    Giunta P, Moreno M, Mariño F, Amadeo N, Laborde M. COPrOx fixed bed reactor. Temperature control schemes. Chem Eng Technol 2012;35:1055–63.Web of ScienceGoogle Scholar

  • 10.

    Ávila P, Montes M, Miró E. Monolithic reactors for environmental applications. A review on preparation technologies. Chem Eng J 2005;109:11–36.CrossrefGoogle Scholar

  • 11.

    Cybulski A, Moulijn JA. The present and the future of structured catalysis – an overview. In: Cybulski A, Moulijn JA, editors. Structured catalysts and reactors. New York: Marcel Dekker, 1998:1–14.Google Scholar

  • 12.

    Groppi G, Tronconi E. Honeycomb supports with high thermal conductivity for gas/solid chemical processes. Catal Today 2005;105:297–304.CrossrefGoogle Scholar

  • 13.

    Heck RM, Gulati S, Farrauto RJ. The application of monoliths for gas phase catalytic reactions. Chem Eng J 2001;82:149–56.CrossrefGoogle Scholar

  • 14.

    Tomašic V, Jović F. State-of-the-art in the monolithic catalysts/reactors. Appl Catal A Gen 2006;311:112–21.CrossrefGoogle Scholar

  • 15.

    Korotkikh O, Farrauto R. Selective catalytic oxidation of CO in H2: fuel cell applications. Catal Today 2000;62:249–54.CrossrefGoogle Scholar

  • 16.

    Gómez LE, Tiscornia IS, Boix AV, Miró EE. Co/ZrO2 catalysts coated on cordierite monoliths for CO preferential oxidation. Appl Catal A Gen 2011;401:124–33.CrossrefWeb of ScienceGoogle Scholar

  • 17.

    Roberts GW, Chin P, Sun X, Spivey JJ. Preferential oxidation of carbon monoxide with Pt/Fe monolithic catalysts: interactions between external transport and the reverse water-gas-shift reaction. Appl Catal B Environ 2003;46:601–11.CrossrefGoogle Scholar

  • 18.

    Zhou S, Yuan Z, Wang S. Selective CO oxidation with real methanol reformate over monolithic Pt group catalysts: PEMFC applications. Int J Hyd Energy 2006;31:924–33.CrossrefGoogle Scholar

  • 19.

    Ahluwalia RK, Zhang Q, Chmielewski DJ, Lauzze KC, Inbody MA. Performance of CO preferential oxidation reactor with noble-metal catalyst coated on ceramic monolith for on-board fuel processing applications. Catal Today 2005;99:271–83.CrossrefGoogle Scholar

  • 20.

    Zeng SH, Liu Y. Nd- or Zr-modified CuO-CeO2/Al2O3/FeCrAl monolithic catalysts for preferential oxidation of carbon monoxide in hydrogen-rich gases. Appl Surf Sci 2008;254:4879–85.CrossrefWeb of ScienceGoogle Scholar

  • 21.

    Bissett EJ, Oh SH. PrOx reactor model for fuel cell feedstream processing. Chem Eng Sci 2005;60:4722–35.CrossrefGoogle Scholar

  • 22.

    Depcik C, Srinivasan A. One+One-dimensional modeling of monolithic catalytic converters. Chem Eng Technol 2011;34:1949–65.Web of ScienceCrossrefGoogle Scholar

  • 23.

    Tronconi E, Groppi G, Boger T, Heibel A. Monolithic catalysts with “high conductivity” honeycomb supports for gas/solid exothermic reactions: characterization of the heat-transfer properties. Chem Eng Sci 2004;59:4941–9.CrossrefGoogle Scholar

  • 24.

    Arzamendi G, Uriz I, Diéguez PM, Laguna OH, Hernández WY, Álvarez A, et al. Selective CO removal over Au/CeFe and CeCu catalysts in microreactors studied through kinetic analysis and CFD simulations. Chem Eng J 2011;167:588–96.CrossrefGoogle Scholar

  • 25.

    Gonzo E. Hydrogen from methanol-steam reforming. Isothermal and adiabatic monolith reactors’ simulation. Int J Hyd Energy 2008;33:3511–16.Web of ScienceCrossrefGoogle Scholar

  • 26.

    Groppi G, Tronconi E. Design of novel monolith catalyst supports for gas/solid reactions with heat exchange. Chem Eng Sci 2000;55:2161–71.CrossrefGoogle Scholar

  • 27.

    Chen J, Yang H, Wang N, Ring Z, Dabros T. Mathematical modelling of monolith catalysts and reactors for gas phase reactions. Appl Catal A Gen 2008;345:1–11.Google Scholar

  • 28.

    Valentini M, Groppi G, Cristiani C, Levi M, Tronconi E, Forzatti P. The deposition of γ-Al2O3 layers on ceramic and metallic supports for the preparation of structured catalysts. Catal Today 2001;69:307–14.CrossrefGoogle Scholar

  • 29.

    Graschinsky C, Ubogui J, Sarto A, Tejeda R, Laborde M, Francesconi J, et al. Hydrogen production from bioethanol: pilot plant scale. In: VI Chemical Engineering Argentinean Conference, Mar del Plata, Argentina, 2010.Google Scholar

  • 30.

    Mariño F, Descorme C, Duprez D. Supported base metal catalysts for the preferential oxidation of carbon monoxide in the presence of excess hydrogen (PROX). Appl Catal B Environ 2005;58:175–83.CrossrefGoogle Scholar

  • 31.

    Moreno M. Hydrogen catalytic purification. PhD thesis, Engineering School, University of Buenos Aires, 2011.Google Scholar

  • 32.

    Semeniuk HM. CuO/CeO2/Al2O3 catalysts for the preferential oxidation of CO (COPrOx). Eng. thesis, Engineering School, University of Buenos Aires, 2011.Google Scholar

  • 33.

    Elnashaie SS, Elshishini SS. Modelling, simulation and optimization of industrial fixed bed catalytic reactors. Amsterdam: Gordon and Breach Science Publishers, 1993.Google Scholar

  • 34.

    Poulier C, Smith DS, Absi J. Thermal conductivity of pressed powder compacts: tin oxide and alumina. J Eur Ceram Soc 2007;27:475–8.CrossrefWeb of ScienceGoogle Scholar

  • 35.

    Papadias D, Edsberg L, Björnbom P. Simplified method for effectiveness factor calculations in irregular geometries of washcoats. Chem Eng Sci 2000;55:1447–59.CrossrefGoogle Scholar

  • 36.

    Jeifetz LG. Monolithic reactors modelling for its application to the preferential CO oxidation reaction (COPrOx). Eng. thesis, Engineering School, University of Buenos Aires, 2012.Google Scholar

About the article

Published Online: 2014-01-11

Published in Print: 2014-01-01


Citation Information: International Journal of Chemical Reactor Engineering, Volume 12, Issue 1, Pages 1–12, ISSN (Online) 1542-6580, ISSN (Print) 2194-5748, DOI: https://doi.org/10.1515/ijcre-2013-0071.

Export Citation

©2014 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
V. Vaiano, G. Iervolino, D. Sannino, L. Rizzo, G. Sarno, and A. Farina
Applied Catalysis B: Environmental, 2014, Volume 160-161, Page 247
[3]
Mohammad Hajaghazadeh, Vincenzo Vaiano, Diana Sannino, Hossein Kakooei, and Rahmat Sotudeh-Gharebagh
Korean Journal of Chemical Engineering, 2015, Volume 32, Number 4, Page 636

Comments (0)

Please log in or register to comment.
Log in