Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao

IMPACT FACTOR 2017: 0.881
5-year IMPACT FACTOR: 0.908

CiteScore 2017: 0.86

SCImago Journal Rank (SJR) 2017: 0.306
Source Normalized Impact per Paper (SNIP) 2017: 0.503

See all formats and pricing
More options …
Volume 12, Issue 1


Volume 9 (2011)

Volume 8 (2010)

Volume 7 (2009)

Volume 6 (2008)

Volume 5 (2007)

Volume 4 (2006)

Volume 3 (2005)

Volume 2 (2004)

Volume 1 (2002)

Conversion of Glycerol into Value-Added Products Over Cu–Ni Catalyst Supported on γ-Al2O3 and Activated Carbon

Satyanarayana Murty Pudi
  • Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India, Tel.: (+91)-1332-285820, Fax: (+91)-1332-276535
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tarak Mondal
  • Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India, Tel.: (+91)-1332-285820, Fax: (+91)-1332-276535
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Prakash Biswas
  • Corresponding author
  • Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India, Tel.: (+91)-1332-285820, Fax: (+91)-1332-276535
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Shalini Biswas / Shishir Sinha
  • Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India, Tel.: (+91)-1332-285820, Fax: (+91)-1332-276535
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-02-20 | DOI: https://doi.org/10.1515/ijcre-2013-0102


A series of Cu, Ni monometallic and bimetallic catalysts supported on γ-Al2O3 and activated carbon were synthesized by incipient wetness impregnation method and examined for hydrogenolysis and esterification of glycerol. Hydrogenolysis reaction was carried out in a 250 ml Teflon-coated stainless steel batch reactor at 250°C and 10 bar H2 pressure, whereas esterification of glycerol with acetic acid was carried out at 120°C at atmospheric pressure. The physiochemical properties of the catalysts were investigated by various techniques such as surface area, X-ray diffraction (XRD), NH3-temperature-programmed desorption (TPD). Characterization results dictated that the reduction behavior, acidic nature and the metal support interactions were varied with the support as well as Cu/Ni weight ratio. The XRD results confirmed the formation of mixed oxide Cu0.75Ni0.25 Al2O4 phase in Cu–Ni (3:1)/γ-Al2O3 catalyst. Among the catalysts tested, Cu–Ni bimetallic catalysts showed superior performance as compared to monometallic catalysts in both the reactions. The glycerol hydrogenolysis activity of γ-Al2O3 supported Cu–Ni catalysts was higher than the activated carbon-supported catalysts. 1,2-PDO was obtained as the main hydrogenolysis product independent of the support as well as Cu/Ni weight ratio and its selectivity was in the range of 92.8–98.5%. The acidic nature of γ-Al2O3 and the mixed oxide (Cu0.75Ni0.25Al2O4) phase played an important role for hydrogenolysis activity. Cu–Ni (3:1)/γ-Al2O3 catalyst showed the maximum 1,2-PDO selectivity to 97% with 27% glycerol conversion after a reaction time of 5 h. On the other hand, Cu–Ni(1:3)/C catalyst showed the highest glycerol conversion of 97.4% for esterification and obtained selectivity to monoacetin, diacetin and triacetin were 26.1%, 67.2% and 6.5%, respectively.

Keywords: Cu–Ni catalyst; glycerol; hydrogenation; esterification


  • 1.

    Goncalves VL, Pinto BP, Silva JC, Mota CJ. Acetylation of glycerol catalyzed by different solid acids . Catal Today 2008;133:673–7.CrossrefGoogle Scholar

  • 2.

    Werpy T, Petersen G. Top value added chemicals from biomass-results of screening for potential candidates from sugars and synthesis gas . US DOE Report, vol. 1, 2004.Google Scholar

  • 3.

    Pagliaro M, Rossi M. The future of glycerol: new usages for a versatile raw material. Cambridge: RSC Publishing, 2008.Google Scholar

  • 4.

    Behr A, Eilting J, Irawadi K, Leschinski J, Lindner F. Improved utilisation of renewable resources: new important derivatives of glycerol . Green Chem 2008;10:13–30.CrossrefGoogle Scholar

  • 5.

    Zhou CH, Beltramini JN, Fan YX, Lu GQ. Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals . Chem Soc Rev 2008;37:527–49.CrossrefPubMedGoogle Scholar

  • 6.

    Chaminand J, Djakovitch L, Gallezot P, Marion P. Glycerol hydrogenolysis on heterogeneous catalysts . Green Chem 2004;6:359–61.CrossrefGoogle Scholar

  • 7.

    Dasari MA, Kiatsimkul PP, Sutterlin WR, Suppes GJ. Low pressure hydrogenolysis of glycerol to propylene glycol . Appl Catal A: Gen 2005;281:225–31.CrossrefGoogle Scholar

  • 8.

    Kusunoki Y, Miyazawa T, Kunimori K, Tomishige K. Highly active metal–acid bifunctional catalyst system for hydrogenolysis of glycerol under mild reaction conditions . Catal Commun 2005;6:645–9.CrossrefGoogle Scholar

  • 9.

    Furikado I, Miyazawa T, Koso S, Shimao A, Kunimori K, Tomishige K. Catalytic performance of rh/SiO2 in glycerol reaction under hydrogen . Green Chem 2007;9:582–8.CrossrefGoogle Scholar

  • 10.

    Maris EP, Davis RJ. Hydrogenolysis of glycerol over carbon-supported Ru and Pt catalysts . J Catal 2007;249:328–37.CrossrefGoogle Scholar

  • 11.

    Miyazawa T, Koso S, Kuminori K, Tomishige K. Development of a Ru/C catalyst for glycerol hydrogenolysis in combination with an ion-exchange resin . Appl Catal A: Gen 2007;318:244–51.CrossrefGoogle Scholar

  • 12.

    Miyazawa T, Koso S, Kunimori K, Tomishige K. Glycerol hydrogenolysis to 1,2-propanediol catalyzed by a heat resistant ion-exchange resin combined with Ru/C . Appl Catal A: Gen 2007;329:30–5.CrossrefGoogle Scholar

  • 13.

    Wang S, Liu H. Selective hydrogenolysis of glycerol to propylene glycol on Cu–ZnO catalysts . Catal Lett 2007;117:62–7.CrossrefGoogle Scholar

  • 14.

    Alhanash A, Kozhevnikova EF, Kozhevnikov IV. Hydrogenolysis of glycerol to propanediol over Ru: polyoxometalate bifunctional catalyst . Catal Lett 2008;120:307–11.CrossrefGoogle Scholar

  • 15.

    Ma L, He D, Li Z. Promoting effect of rhenium on catalytic performance of Ru catalysts in hydrogenolysis of glycerol to propanediol . Catal Commun 2008;9:2489–95.CrossrefGoogle Scholar

  • 16.

    Sato S, Akiyama M, Takahashi R, Hara T, Inui K, Yokota M. Vapor-phase reaction of polyols over copper catalysts . Appl Catal A: Gen 2008;347:186–91.CrossrefGoogle Scholar

  • 17.

    Balaraju M, Rekha V, Prasad PS, Prabhavathi Devi BL, Prasad RB, Lingaiah N. Selective hydrogenolysis of glycerol to 1, 2-propanediol over Cu–ZnO catalysts . Appl Catal A: Gen 2009;354:82–7.CrossrefGoogle Scholar

  • 18.

    Vasiliadou ES, Heracleous E, Vasalos IA, Lemonidou AA. Ru-based catalysts for glycerol hydrogenolysis-effect of support and metal precursor . Appl Catal B: Environ 2009;92:90–9.CrossrefGoogle Scholar

  • 19.

    Gandarias I, Arias PL, Requies J, Guemez MB, Fierro JL. Hydrogenolysis of glycerol to propanediols over a Pt/ASA catalyst: the role of acid and metal active sites on product selectivity and the reaction mechanism . Appl Catal B: Environ 2010;97:248–56.CrossrefGoogle Scholar

  • 20.

    Gong L, Lu Y, Ding Y, Lin R, Li J, Dong W, et al. Selective hydrogenolysis of glycerol to 1,3-propanediol over a Pt/WO3/TiO2/SiO2 catalyst in aqueous media . Appl Catal A: Gen 2010;390:119–26.CrossrefGoogle Scholar

  • 21.

    Roy D, Subramaniam B, Chaudhari RV. Aqueous phase hydrogenolysis of glycerol to 1,2-propanediol without external hydrogen addition . Catal Today 2010;156:31–7.CrossrefGoogle Scholar

  • 22.

    Shinmi Y, Koso S, Kubota T, Nagakawa Y, Tomishige K. Modification of Rh/SiO2 catalyst for the hydrogenolysis of glycerol in water . Appl Catal B: Environ 2010;94:318–26.CrossrefGoogle Scholar

  • 23.

    Hamzah N, Nordin NM, Nadzri AH, Nik YA, Kassim MB, Yarmo MA. Enhanced activity of Ru/TiO2 catalyst using bisupport, bentonite-TiO2 for hydrogenolysis of glycerol in aqueous media . Appl Catal A: Gen 2012;419:133–41.CrossrefGoogle Scholar

  • 24.

    Perosa A, Tundo P. Selective hydrogenolysis of glycerol with Raney Nickel . Ind Eng Chem Res 2005;44:8535–7.CrossrefGoogle Scholar

  • 25.

    Gandarias I, Arias PL, Requies J, Doukkali ME, Güemez MB. Liquid-phase glycerol hydrogenolysis to 1,2-propanediol under nitrogen pressure using 2-propanol as hydrogen source . J Catal 2011;282:237–47.CrossrefGoogle Scholar

  • 26.

    Gandarias I, Requies J, Arias PL, Armbruster U, Martin A. Liquid-phase glycerol hydrogenolysis by formic acid over Ni–Cu/Al2O3 catalysts . J Catal 2012;290:79–89.CrossrefGoogle Scholar

  • 27.

    Melero JA, Van Grieken R, Molares G, Paniagua M. Acidic mesoporous silica for the acetylation of glycerol: synthesis of bioadditives to petrol fuel . Energy Fuels 2007;21:1782–91.CrossrefGoogle Scholar

  • 28.

    Liao X, Zhu Y, Wang SG, Li Y. Producing triacetylglycerol with glycerol by two steps: esterification and acetylation . Fuel Process Technol 2009;90:988–93.CrossrefGoogle Scholar

  • 29.

    Ferreira P, Fonseca IM, Ramos AM, Vital J, Castanheiro JE. Esterification of glycerol with acetic acid over dodecamolybdophosphoric acid encaged in USY zeolite . Catal Commun 2009;10:481–4.CrossrefGoogle Scholar

  • 30.

    Ferreira P, Fonseca IM, Ramos AM, Vital J, Castanheiro JE. Glycerol acetylation over dodecatungstophosphoric acid immobilized into a silica matrix as catalyst . Appl Catal B: Environ 2009;91:416–22.CrossrefGoogle Scholar

  • 31.

    Jagadeeswaraiah K, Balaraju M, Sai Prasad PS, Lingaiah N. Selective esterification of glycerol to bioadditives over heteropoly tungstate supported on Cs-containing zirconia catalysts . Appl Catal A: Gen 2010;386:166–70.CrossrefGoogle Scholar

  • 32.

    Ferreira P, Fonseca IM, Ramos AM, Vital J, Castanheiro JE. Acetylation of glycerol over heteropolyacids supported on activated carbon . Catal Commun 2011;12:573–6.CrossrefGoogle Scholar

  • 33.

    Rodríguez ID, Adriany C, Gaigneaux EM. Glycerol acetylation on sulphated zirconia in mild conditions . Catal Today 2011;167:56–63.CrossrefGoogle Scholar

  • 34.

    Trejda M, Stawicka K, Dubinska A, Ziolek M. Development of niobium containing acidic catalysts for glycerol esterification . Catal Today 2012;187:129–34.CrossrefGoogle Scholar

  • 35.

    Khayoon MS, Hameed BH. Synthesis of hybrid SBA-15 functionalized with molybdophosphoric acid as efficient catalyst for glycerol esterification to fuel additives . Appl Catal A: Gen 2012;433–434:152–61.CrossrefGoogle Scholar

  • 36.

    Xu J, Yu W, Ma H, Wang F, Lu F, Ghavre M, et al. Catalytic conversion of glycer--ol. In: Xie H, Gathergood N, editors. The role of green chemistry in biomass processing and conversion. Hoboken, NJ: John Wiley & Sons, Inc, 2011:357.Google Scholar

  • 37.

    Hu S, Luo X, Wan C, Li Y. Characterization of crude glycerol from biodiesel plants . J Agric Food Chem 2012;60:5915−21.PubMedCrossrefGoogle Scholar

  • 38.

    Hierl R, Knozinger H, Urbach HP. Surface properties and reduction behavior of calcined CuO/Al2O3 and CuO-NiO/Al2O3 catalysts . J Catal 1981;69:475–86.CrossrefGoogle Scholar

  • 39.

    Wang X, Pan X, Lin R, Kou S, Jou W, Ma JX. Steam reforming of dimethyl ether over Cu–Ni/γ-Al2O3 bi-functional catalyst prepared by deposition–precipitation method . Int J Hydrogen Energy 2010;35:4060–8.CrossrefGoogle Scholar

  • 40.

    Liu Y, Liu D. Study of bimetallic Cu–Ni/γ-Al2O3 catalysts for carbon dioxide hydrogenation . Int J Hydrogen Energy 1999;24:351–4.CrossrefGoogle Scholar

  • 41.

    Arias AM, Garcia MF, Ballesteros V, Salamanca LN, Conesa JC, Otero C, et al. Characterization of high surface area Zr-Ce (1:1) mixed oxide prepared by a microemulsion method . Langmuir 1999;15:4796–802.CrossrefGoogle Scholar

  • 42.

    Dandekar A, Baker RT, Vannice MA. Carbon-supported copper catalysts I. characterization . J Catal 1999;183:131–54.CrossrefGoogle Scholar

  • 43.

    Rao RS, Baker RT, Vannice MA. Furfural hydrogenation over carbon-supported copper . Catal Lett 1999;60:51–7.CrossrefGoogle Scholar

  • 44.

    Liu Z, Zhou R, Zheng X. Comparative study of different methods of preparing CuO-CeO2 catalysts for preferential oxidation of CO in excess hydrogen . J Mol Catal A: Chem 2007;267:137–42.CrossrefGoogle Scholar

  • 45.

    Meher LC, Gopinath R, Naik SN, Dalai AK. Catalytic hydrogenolysis of glycerol to propylene glycol over mixed oxides derived from a hydrotalcite-type precursor . Ind Eng Chem Res 2009;48:1840–6.CrossrefGoogle Scholar

  • 46.

    Yuan Z, Wu P, Gao J, Lu X, Hou Z, Zheng X. Pt/solid-base: a predominant catalyst for glycerol hydrogenolysis in a base-free aqueous solution . Catal Lett 2009;130:261–5.CrossrefGoogle Scholar

  • 47.

    Balaraju M, Rekha V, Prasad PS, Prasad RB, Lingaiah N. Selective hydrogenolysis of glycerol to 1, 2-propanediol over Cu–ZnO catalysts . Catal Lett 2008;126:119–24.CrossrefGoogle Scholar

  • 48.

    Hao SL, Peng WC, Zhao N, Xiao FK, Wei W, Sun YH. Hydrogenolysis of glycerol to 1,2-propanediol catalyzed by Cu-H4SiW12O40/Al2O3 in liquid phase . J Chem Technol Biotechnol 2010;85:1499–503.Google Scholar

  • 49.

    Huang Z, Cui F, Kang H, Chen J, Zhang X, Xia C. Highly dispersed silica-supported copper nanoparticles prepared by precipitation-gel method: a simple but efficient and stable catalyst for glycerol hydrogenolysis . Chem Mater 2008;20:5090–9.CrossrefGoogle Scholar

  • 50.

    Yuan Z, Wang J, Wang L, Xie W, Chen P, Hou Z, et al. Biodiesel derived glycerol hydrogenolysis to 1,2-propanediol on Cu/MgO catalysts . Biores Technol 2010;101:7088–92.CrossrefGoogle Scholar

  • 51.

    Guo L, Zhou J, Mao J, Guo X, Shuguang Z. Supported cu catalysts for the selective hydrogenolysis of glycerol to propanediols . Appl Catal A: Gen 2009;367:93–8.CrossrefGoogle Scholar

  • 52.

    Vila F, Granados ML, Ojeda M, Fierro JL, Mariscal R. Glycerol hydrogenolysis to 1,2-propanediol with Cu/γ-Al2O3: effect of the activation process . Catal Today 2012;187:122–8.CrossrefGoogle Scholar

  • 53.

    Mane RB, Hengne AM, Ghalwadkar AA, Vijayanand S, Mohite PH, Pot-dar HS, et al. Cu:Al nano catalyst for selective hydrogenolysis of glycerol to 1,2-propanediol . Catal Lett 2010;135:141–7.CrossrefGoogle Scholar

  • 54.

    Yadav GD, Chandan PA, Devendra PT. Hydrogenolysis of glycerol to 1,2-propanediol over nano-fibrous Ag-OMS-2 catalysts . Ind Eng Chem Res 2012;51:1549–62.CrossrefGoogle Scholar

  • 55.

    Montassier C, Dumas JM, Granger P, Barbier J. Deactivation of supported copper based catalysts during polyol conversion in aqueous phase . Appl Catal A: Gen 1995;121:231–44.CrossrefGoogle Scholar

  • 56.

    Yuan Z, Wang L, Wang J, Xia S, Cheng P, Hou Z, et al. Hydrogenolysis of glycerol over homogenously dispersed copper on solid base catalysts . Appl Catal B: Environ 2011;101:431–40.CrossrefGoogle Scholar

About the article

Published Online: 2014-02-20

Published in Print: 2014-01-01

Citation Information: International Journal of Chemical Reactor Engineering, Volume 12, Issue 1, Pages 151–162, ISSN (Online) 1542-6580, ISSN (Print) 2194-5748, DOI: https://doi.org/10.1515/ijcre-2013-0102.

Export Citation

©2014 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Jiří Kolena, Lenka Skuhrovcová, Jaroslav Kocík, Jan Šafář, and Jaroslav Kupčík
Topics in Catalysis, 2018
Jiří Kolena, Lenka Soukupová, Jaroslav Kocík, and Jaromír Lederer
Reaction Kinetics, Mechanisms and Catalysis, 2017

Comments (0)

Please log in or register to comment.
Log in