Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao

12 Issues per year

IMPACT FACTOR 2017: 0.881
5-year IMPACT FACTOR: 0.908

CiteScore 2017: 0.86

SCImago Journal Rank (SJR) 2017: 0.306
Source Normalized Impact per Paper (SNIP) 2017: 0.503

See all formats and pricing
More options …
Volume 12, Issue 1


Volume 9 (2011)

Volume 8 (2010)

Volume 7 (2009)

Volume 6 (2008)

Volume 5 (2007)

Volume 4 (2006)

Volume 3 (2005)

Volume 2 (2004)

Volume 1 (2002)

Genetic Optimization of Energy Consumption of Pellet Shaft Furnace Combustor Based on Support Vector Machine (SVM)

Xi Chen
  • Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Wenqi Zhong
  • Corresponding author
  • Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tiancai Wang / Fei Liu / Zhi Zhang
Published Online: 2014-03-07 | DOI: https://doi.org/10.1515/ijcre-2013-0117


Investigation on optimization of pellet shaft furnace based on the combination of genetic algorithm and support vector machine (SVM) is carried out. A SVM classifier model is developed to map the complex nonlinear relationship between operating parameters and the quality indexes of fired pellet, and a genetic algorithm is adapted in the energy optimization with the fitness function based on the SVM classifier model. This method can reduce the energy consumption while maintaining the fired pellet quality stable. The results show that the accuracy of the SVM classifier model is satisfied and the gas consumption can be reduced by 4% per ton of green pellets with this optimization method.

Keywords: genetic optimization algorithm; support vector machine (SVM); pellet shaft furnace


  • 1.

    Sun Y, Xu H, Wang Y, Cui Y, Liu C. The comparison between vertical shaft furnace and rotary kiln for petroleum coke calcination. Light Met 2010:917–21.Google Scholar

  • 2.

    Jung CH, Matsuto T, Tanaka N. Behavior of metals in ash melting and gasification-melting of municipal solid waste (MSW). Waste Manage 2005;25:301–10.CrossrefGoogle Scholar

  • 3.

    Osada S, Kuchar D, Matsuda H. Effect of chlorine on volatilization of Na, K, Pb, and Zn compounds from municipal solid waste during gasification and melting in a shaft-type furnace. J Mater Cycles Waste Manage 2009;11:367–75.CrossrefWeb of ScienceGoogle Scholar

  • 4.

    Sobolev IA, Dmitriev SA, Karlin SV, Semenov KN, Lifanov FA, Kobelev AP, et al. High temperature treatment of intermediate-level radioactive wastes – SIA radon experience. Paper presented at the WM’03 conference, Tucson, AZ, February 23–24, 2003.Google Scholar

  • 5.

    Zhao Y, Wen H, Xu Z. Conceptual design and simulation study of a co-gasification technology. Energy Conversion Manage 2006;47:1416–28.Google Scholar

  • 6.

    Warnecke R. Gasification of biomass: comparison of fixed bed and fluidized bed gasifier. Biomass Bioenergy 2000;18:489–97.CrossrefGoogle Scholar

  • 7.

    Liang R, He J. Moving behavior of pellets in a pellet shaft furnace. J Cent South Univ Technol 2008;15:280–3.CrossrefWeb of ScienceGoogle Scholar

  • 8.

    Takenaka Y, Kimura Y, Narita K, Kaneko D. Mathematical model of direct reduction shaft furnace and its application to actual operations of a model plant. Comput Chem Eng 1986;10:67–75.CrossrefGoogle Scholar

  • 9.

    Takahashi R, Takahashi Y, Yagi J, Omori Y. Operation and simulation of pressurized shaft furnace for direct reduction. Trans Iron Steel Inst Jpn 1986;26:765–74.CrossrefGoogle Scholar

  • 10.

    Batterham RJ. Modeling the development of strength in pellets. Metallurgical Trans B 1986;17:479–85.CrossrefGoogle Scholar

  • 11.

    Zhang Y, Feng J, Xu J, Zhang Y, Yang J. Energy and exergy analyses of a mixed fuel-fired grate-kiln for iron ore pellet induration. Energy Conversion Manage 2011;52:2064–71.Web of ScienceCrossrefGoogle Scholar

  • 12.

    Dwarapudi S, Gupta PK, Rao SM. Prediction of iron ore pellet strength using artificial neural network model. ISIJ Int 2007;47:67–72.Web of ScienceCrossrefGoogle Scholar

  • 13.

    Zhang J, Xie A, Shen F. Multi-objective optimization and analysis model of sintering process based on BP neural network. J Iron Steel Res Int 2007;14:1–5.CrossrefGoogle Scholar

  • 14.

    Majumder S, Natekar PV, Runkana V. Virtual indurator: a tool for simulation of induration of wet iron ore pellets on a moving grate. Comput Chem Eng 2009;33:1141–52.CrossrefWeb of ScienceGoogle Scholar

  • 15.

    Chai T, Ding J, Wu F. Hybrid intelligent control for optimal operation of shaft furnace roasting process. Control Eng Pract 2011;19:264–75.Web of ScienceCrossrefGoogle Scholar

  • 16.

    Yan A, Chai T, Yue H. Multivariable intelligent optimizing control approach for shaft furnace roasting process. Acta Automatica Sin 2006;32:636–40.Google Scholar

  • 17.

    Cross M, Blot P. Optimizing the operation of straight-grate iron-ore pellet induration systems using process models. Metallurgical Mater Trans B 1999;30:803–13.CrossrefGoogle Scholar

  • 18.

    Cortes C, Vapnik V. Support-vector networks. Mach Learn 1995;20:273–97.CrossrefGoogle Scholar

  • 19.

    Haykin S. Neural networks: a comprehensive foundation. Upper Saddle River, New Jersey: Prentice Hall, 1994.Google Scholar

  • 20.

    Boser BE, Guyon IM, Vapnik VN. A training algorithm for optimal margin classifiers. Paper presented at COLT92 5th annual workshop on computational learning theory, Pittsburgh, PA, July 27–29, 1992.Google Scholar

  • 21.

    Müller KR, Smola AJ, Rätsch G, Schölkopf B, Kohlmorgen J, Vapnik V. Predicting time series with support vector machines. Lect Notes Comput Sci 1997;1327:999–1004.CrossrefGoogle Scholar

  • 22.

    Patil NS, Shelokar PS, Jayaraman VK, Kulkarni BD. Regression models using pattern search assisted least square support vector machines. Chem Eng Res Des 2005;83:1030–7.CrossrefGoogle Scholar

  • 23.

    Wu X, Huang Q, Zhu X. Thermal modeling of a solid oxide fuel cell and micro gas turbine hybrid power system based on modified LS-SVM. Int J Hydrogen Energy 2011;36:885–92.CrossrefWeb of ScienceGoogle Scholar

  • 24.

    Shopova EG, Vaklieva-Bancheva NG. Basic-genetic algorithm for engineering problems solution. Comput Chem Eng 2006;30:1293–309.CrossrefGoogle Scholar

  • 25.

    Montastruc L, Azzaro-Pantel C, Pibouleau L, Domenech S. Use of genetic algorithms and gradient based optimization techniques for calcium phosphate precipitation. Chem Eng Process: Process Intensification 2004;43:1289–98.CrossrefGoogle Scholar

  • 26.

    Wang K, Salhi A, Fraga ES. Process design optimisation using embedded hybrid visualisation and data analysis techniques within a genetic algorithm optimisation framework. Chem Eng Process: Process Intensification 2004;43:657–69.CrossrefGoogle Scholar

  • 27.

    Wang Z, Yang B, Chen C, Yuan J, Wang L. Modeling and optimization for the secondary reaction of FCC gasoline based on the fuzzy neural network and genetic algorithm. Chem Eng Process: Process Intensification 2007;46:175–80.CrossrefWeb of ScienceGoogle Scholar

  • 28.

    Holland JH. Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. Ann Arber, Michigan: University of Michigan Press, 1975.Google Scholar

About the article

Published Online: 2014-03-07

Published in Print: 2014-01-01

Citation Information: International Journal of Chemical Reactor Engineering, Volume 12, Issue 1, Pages 205–214, ISSN (Online) 1542-6580, ISSN (Print) 2194-5748, DOI: https://doi.org/10.1515/ijcre-2013-0117.

Export Citation

©2014 by De Gruyter.Get Permission

Comments (0)

Please log in or register to comment.
Log in