Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao

12 Issues per year


IMPACT FACTOR 2017: 0.881
5-year IMPACT FACTOR: 0.908

CiteScore 2017: 0.86

SCImago Journal Rank (SJR) 2017: 0.306
Source Normalized Impact per Paper (SNIP) 2017: 0.503

Online
ISSN
1542-6580
See all formats and pricing
More options …

Comparative Study of Removal of Cadmium (II) and Chromium (III) Ions from Aqueous Solution Using Low-Cost Biosorbent

Abbas H. Sulaymon / Ahmed A. Mohammed / Tariq J. Al-Musawi
Published Online: 2014-07-24 | DOI: https://doi.org/10.1515/ijcre-2014-0024

Abstract

This study aims to evaluate the ability of abundant low-cost garden grass to remove cadmium and chromium ions from aqueous solutions. Batch biosorption studies were carried out to examine the biosorption capacity, pH value, temperature, agitation speed, and metal ions concentration. The biosorption process revealed that the garden grass was an effective biosorbent of cadmium and chromium. The maximum chromium and cadmium removal rate was 90 and 80% at pH 4, respectively. FTIR spectroscopy analysis showed that the hydroxyl, amine, and carboxyl groups were the major groups responsible for the biosorption process. The maximum biosorption capacity was 18.19 and 19.4 mg/g for cadmium and chromium, respectively. The biosorption isotherm data fitted well the Langmuir model. Kinetic data were adequately fitted by the pseudo-second-order kinetic model.

Keywords: garden grass; biosorption; equilibrium; kinetics

References

  • 1.

    Gin KY, Tang Y, Aziz MA. Derivation and application of a new model for heavy metal biosorption by algae. J Water Res 2002;36:1313–23.CrossrefGoogle Scholar

  • 2.

    WHO: World Health Organization. Guidelines for drinking water quality, recommendations, 1st ed., vol. 1. Geneva, 1984.Google Scholar

  • 3.

    Barbier O, Jacquillet G, Tauc M, Cougnon M, Poujeol P. Effect of heavy metals on, and handling by, the kidney. Nephron Physiol 2005;99:105–10.CrossrefGoogle Scholar

  • 4.

    Tsezos M. Biosorption of metals: the experience accumulated and the outlook for technology development. Hydrometalurgy 2001;59:241–3.CrossrefGoogle Scholar

  • 5.

    John F. Chromium life cycle study. United States, Bureau of Mines, Library of Congress, 1994.Google Scholar

  • 6.

    Volesky B. Biosorption and me. Water Res 2007;41:4017–29.CrossrefPubMedGoogle Scholar

  • 7.

    Hossain MA, Ngo HH, Guo WS, Setiadi T. Adsorption and desorption of copper(II) ions onto garden grass. J Bioresour Technol 2012;121:386–95.CrossrefWeb of ScienceGoogle Scholar

  • 8.

    Sulaymon AH, Mohammed AA, Al-Musawi TJ. Removal of lead, cadmium, copper, and arsenic ions using biosorption: equilibrium and kinetic studies. Desalination Water Treat 2013. .CrossrefGoogle Scholar

  • 9.

    Sulaymon AH, Mohammed AA, Al-Musawi TJ. Biosorption of cadmium ions using garden grass. IOSRJEN 2014;4:16–25.CrossrefGoogle Scholar

  • 10.

    Chojnacka K. Biosorption of cr(III) ions by wheat straw and grass: a systematic characterization of new biosorbents. Polish J Environ Stud 2006;15:845–52.Google Scholar

  • 11.

    Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 1918;40:1361–403.CrossrefGoogle Scholar

  • 12.

    FreundlichH MF. Over the adsorption in solution. J Phys Chem 1906;57:385–407.Google Scholar

  • 13.

    Lagergren S. About the theory of so-called adsorption of soluble substances. Kungliga Svenska Veteskapsakademiens Handlingar 1898;24:1–39.Google Scholar

  • 14.

    Ho YS, McKay G. Pseudo-second-order model for sorption processes. Process Biochem 1999;34:451–65.CrossrefGoogle Scholar

  • 15.

    Bulut Y, Aydin H. A kinetic and thermodynamics study of methylene blue adsorption on wheat shells. Desalination 2006;194:259–67.CrossrefGoogle Scholar

  • 16.

    Kavitha D, Namasivayam C. Experimental and kinetic studies on methylene blue adsorption by coir pith carbon. Bioresour Technol 2007;98:14–21.Web of SciencePubMedCrossrefGoogle Scholar

  • 17.

    Azizian S. Kinetic models of sorption: A theoretical analysis. J Colloid Interface Sci 2004;276:47–52.CrossrefPubMedGoogle Scholar

  • 18.

    Doke KM, Yusufi M, Joseph RD, Khan EM. Biosorption of hexavalent chromium onto wood apple shell: equilibrium, kinetic and thermodynamic studies. Desalination Water Treat 2012;50:170–9.Web of ScienceCrossrefGoogle Scholar

  • 19.

    Chen J, Hu Z, Ji R. Removal of carbofuran from aqueous solution by orange peel. Desalination Water Treat 2012;49:106–14.CrossrefGoogle Scholar

  • 20.

    Sulaymon AH, Mohammed AA, Al-Musawi TJ. Column biosorption of lead, cadmium, copper, and arsenic ions onto algae. J Bioprocess Biotechnol 2013;3:1–7. CrossrefGoogle Scholar

  • 21.

    Arief VO, Trilestari K, Sunarso J, Indraswati N, Ismadji S. Recent progress on biosorption of heavy metals from liquids using low cost biosorbents: characterization, biosorption parameters and mechanism studies: a review. Clean 2008;36:937–62.Web of ScienceGoogle Scholar

  • 22.

    Al-Rub AA, El-Naas MH, Ashour I, Al-Marzouqi M. Biosorption of copper on Chlorella vulgaris from single, binary and ternary metal aqueous solutions. Process Biochem 2006;41:457–64.CrossrefGoogle Scholar

  • 23.

    Aksu Z, Donmez GA. Comparative study on the biosorption characteristics of some yeasts for remazol blue reactive dye. Chemosphere 2003;50:1075–83.CrossrefPubMedGoogle Scholar

  • 24.

    Lu D, Cao Q, Li X, Cao X, Luo F, Shao W. Kinetics and equilibrium of cu(II) adsorption onto chemically modified orange peel cellulose biosorbents. J Hydrometallurgy 2008. CrossrefWeb of ScienceGoogle Scholar

  • 25.

    Lodeiro P, Cordero B, Grille Z, Herrero R, Vicente ME. Physicochemical studies of cadmium (II) biosorption by the invasive alga in Europe: sargassummuticum. J Biotechnol Bioeng 2004;88:237–47.CrossrefGoogle Scholar

  • 26.

    Sulaymon AH, Mohammed AA, Al-Musawi TJ. Competitive biosorption of lead, cadmium, copper, and arsenic ions using algae. Environ Sci Pollut Res 2013;20:3011–23.Web of ScienceCrossrefGoogle Scholar

  • 27.

    Bulut Y, Gul A, Baysal Z, Alkan H. Absorption of ni(II) from aqueous solution by Bacillus subtilis. Desalination Water Treat 2012;49:74–80.CrossrefWeb of ScienceGoogle Scholar

  • 28.

    Saleem M, Pirzada T, Qadeer R. Sorption of acid violet 17 and direct red 80 dyes on cotton fiber from aqueous solutions. J Colloids Surf A: Physicochem Eng Aspects 2007;292:246–50.CrossrefWeb of ScienceGoogle Scholar

  • 29.

    Sari A, Tuzen M. Biosorption of cadmium (II) from aqueous solution by red algae (Ceramium virgatum): equilibrium, kinetic and thermodynamic studies. J Hazard Mat 2008;157:448–54.CrossrefGoogle Scholar

  • 30.

    Anwar J, Shafique U, Waheeduz Z, Salman M, Dar A, Anwar S. Removal of pb(II) and cd(II) from water by adsorption on peels of banana. J Bioresour Technol 2010;101:1752–5.Web of ScienceCrossrefGoogle Scholar

  • 31.

    Vijayaraghavan K, Yun YS. Competition of reactive red 4, reactive orange 16 and basic blue 3 during biosorption of reactive blue 4 by polysulfone-immobilized Corynebacterium glutamicum. J Hazardous Mater 2008;153:478–86.CrossrefWeb of ScienceGoogle Scholar

  • 32.

    Allen SJ, Brown PA. Isotherm analyses for single component and multi-component metal sorption onto lignite. J Chem Technol Biotechnol 1995;62:17–24.CrossrefGoogle Scholar

  • 33.

    Holan ZR, Volesky B, Prasetyo I. Biosorption of cadmium by biomass of marine algae. Biotechnol Bioeng 1993;41:819–25.PubMedCrossrefGoogle Scholar

  • 34.

    Barros LM, Macedo GR, Duarte ML, Silva EP, Lobato AK. Biosorption of cd using the fungus A. Niger. Braz J Chem Eng 2003;20:229–39.Google Scholar

  • 35.

    Mattuschka B, Junghaus K, Straube G. Biosorption of metals by waste biomass. In: Torma AE, Apel ML, Brierley CL, editors. Biohydrometallurgical technologies, vol. 2. Warrendale, PA: The Minerals, Metals & Materials Society, 1993:125–32.Google Scholar

  • 36.

    Krishnan KA, Anirudhan TS. Removal of cadmium (II) from aqueous solutions by steam-activated sulphurised carbon prepared from sugar-cane bagasse pith: kinetics and equilibrium studies. Water SA 2003;29:147–56.Google Scholar

About the article

Published Online: 2014-07-24

Published in Print: 2014-01-01


Citation Information: International Journal of Chemical Reactor Engineering, Volume 12, Issue 1, Pages 477–486, ISSN (Online) 1542-6580, ISSN (Print) 2194-5748, DOI: https://doi.org/10.1515/ijcre-2014-0024.

Export Citation

©2014 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Izabela Michalak, Katarzyna Godlewska, and Krzysztof Marycz
Waste and Biomass Valorization, 2018
[2]
Ahmad Reza Bagheri, Mehrorang Ghaedi, Kheibar Dashtian, Shaaker Hajati, and Ali Akbar Bazrafshan
Applied Organometallic Chemistry, 2017, Page e3918

Comments (0)

Please log in or register to comment.
Log in