Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao

IMPACT FACTOR 2017: 0.881
5-year IMPACT FACTOR: 0.908

CiteScore 2017: 0.86

SCImago Journal Rank (SJR) 2017: 0.306
Source Normalized Impact per Paper (SNIP) 2017: 0.503

See all formats and pricing
More options …
Volume 13, Issue 2


Volume 17 (2019)

Volume 9 (2011)

Volume 8 (2010)

Volume 7 (2009)

Volume 6 (2008)

Volume 5 (2007)

Volume 4 (2006)

Volume 3 (2005)

Volume 2 (2004)

Volume 1 (2002)

CO2 Sorption-Enhanced Processes by Hydrotalcite-Like Compounds at Different Temperature Levels

K. Gallucci
  • Corresponding author
  • Department of Industrial Engineering, University of L’Aquila, via G. Gronchi 18, 67100 L’Aquila, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ F. Micheli / D. Barisano
  • Department of Industrial Engineering, University of L’Aquila, via G. Gronchi 18, 67100 L’Aquila, Italy
  • Enea CR Trisaia, SS Jonica 106 – km 419 + 500, 75026 Rotondella, Matera, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ A. Villone / P.U. Foscolo / L. Rossi
  • Department of Physical and Chemical Science, University of L’Aquila, via Vetoio (Coppito 1), 67100 L’Aquila, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-04-28 | DOI: https://doi.org/10.1515/ijcre-2014-0131


The aim of this work is to identify solid sorbents for CO2 capture for coal and biomass syngas conditioning and cleaning by means of a sorption-enhanced reaction process. Hydrotalcite-like compounds (HTlcs) were synthesized with and without K2CO3 impregnation. Samples were characterized by scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX), X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) and Barrett–Joyner–Halenda (BJH) porosimetry after synthesis and after capture tests, respectively. Sorption and desorption tests were performed in a fluidized bed reactor, under cyclic conditions, at two different temperature levels: 350/450°C and 600/700°C. At low temperature only the Mg–Al HTlcs K promoted samples showed stability and sorption capacity comparable with literature values. On the other hand, results at high temperature indicate that the mixed Mg-Ca-Al HTlcs samples exhibit the best behavior with the highest sorption capacity (1.7 mmolCO2/g) almost stable over 5 sorption/regeneration cycles; furthermore, addition of steam allowed increasing their reactivity by 70% compared to the dry value. This type of sorbent could be a promising candidate to prepare a bifunctional sorbent–catalyst for sorption-enhanced processes, taking place directly in the fluidized bed gasifier, or downstream the reactor for adjustment of gas composition before further conversion in gaseous energy carriers.

Keywords: CO2 sorption-enhanced processes; process intensification; hydrotalcite-like compounds; bifunctional sorbent–catalyst


  • 1.

    Barisano, D., Freda, C., Nanna, F., Fanelli, E., Villone, A., 2012. Biomass gasification and in-bed contaminants removal: Performance of iron enriched Olivine and bauxite in a process of steam/O2 gasification. Bioresource Technology 118, 187–194.Web of ScienceCrossrefGoogle Scholar

  • 2.

    Di Felice, L., Courson, C., Jand, N., Gallucci, K., Foscolo, P.U., Kiennemann, A., 2009a. Catalytic biomass gasification: Simultaneous hydrocarbons steam reforming and CO2 capture in a fluidised bed reactor. Chemical Engineering Journal 154, 375–383.CrossrefWeb of ScienceGoogle Scholar

  • 3.

    Di Felice, L., Foscolo, P.U., Gibilaro L., 2009b. CO2 capture by calcined dolomite in a fluidized bed: Experimental data and numerical simulation. International Journal of Chemical Reactor Engineering 9, Article A55.Google Scholar

  • 4.

    Duan, X., Evans, D.G. (Eds), 2006. Layered Double Hydroxides. Springer-Verlag, Berlin Heidelberg (Structure and Bonding vol. 119).Google Scholar

  • 5.

    Ghajari, A., Kamali, M., Mortazavi, S.A., 2007. A comprehensive study of Laffan Shale Formation in Sirri oil fields, offshore Iran: Implications for borehole stability. Journal of Petroleum Science and Engineering 107, 50–56.Google Scholar

  • 6.

    Magaldi, D., Giammatteo, M., 2008. Microstrutture della crosta calcarea laminare (orizzonte petrocalcico) di due paleo suoli pleistocenici nell’agro di Cerignola(Foggia). Il Quaternario, Italian Journal of Quaternary Sciences 21(2), 423–432.Google Scholar

  • 7.

    Maroño, M., Torreiro, Y., Gutierrez, L., 2013. Influence of steam partial pressures in the CO2 capture capacity of K-doped hydrotalcite-based sorbents for their application to SEWGS processes. International Journal of Greenhouse Gas Control 14, 183–192.Web of ScienceCrossrefGoogle Scholar

  • 8.

    Micheli, F., Parabello, L., Gallucci, K., Rossi, L., Foscolo, P.U., 2014. H2 from SERP: double hydroxide CO2 sorbents at low and high temperatures. WSED Conference 26–27 February 2014, Wels/Austria.Google Scholar

  • 9.

    Narayanan, S., Krishna, K., 1998. Hydrotalcite-supported palladium catalysts: Part I: Preparation, characterization of hydrotalcites and palladium on uncalcined hydrotalcites for CO chemisorption and phenol hydrogenation. Hydrotalcite-supported palladium catalysts. Applied Catalysis A 174, 221–229.Google Scholar

  • 10.

    Navrotsky, A., Putnam, R.L., Winbo, C., Ros, N., 1997. Thermochemistry of double carbonates in the K2CO3-CaCO3 system. American Mineralogist 82, 546–548.Google Scholar

  • 11.

    Ogino T., Suzuki T., Sawada K., October 1987. The formation and transformation mechanism of calcium carbonate in water. Geochimica et Cosmochimica Acta 51(10), 2757–2767.CrossrefGoogle Scholar

  • 12.

    Oliveira, E.L.G., Grande, C.A., Rodrigues, A.E., 2008. CO2 sorptions on hydrotalcite and alkali-modified hydrotalcites at high temperatures. Journal of Separation and Purification Technology 62, 137–147.Web of ScienceGoogle Scholar

  • 13.

    Silcox, G.D., Kramlich, J.C., Pershling, D.W., 1989. A mathematical model for flash calcination of dispersed CaCO3 and Ca(OH)2 particles. Industrial and Engineering Chemistry Research 28, 155–160.Google Scholar

  • 14.

    Stanmore, B.R., Gilot, P., 2005. Review—calcination and carbonation of limestone during thermal cycling for CO2 sequestration. Fuel Processing Technology 86, 1707–1743.CrossrefGoogle Scholar

  • 15.

    Stoops, G.J., 1976. On the nature of “lublinite” from Hollanta (Turkey). American Mineralogist 61, 172.Google Scholar

  • 16.

    Vamvuka, D., Zografos, D., Alevizos, G., 2008. Control methods for mitigating biomass ash-related problems in fluidized beds. Bioresource Technology 99, 3534–3544.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 17.

    Walspurger, S., Boels, L., Cobden, P.D., Elzinga, G.D., Haije, W.G., van den Brink, R.W., 2008. The crucial role of the K+-aluminium oxide interaction in K+-promoted alumina- and hydrotalcite-based materials for CO2 sorption at high temperatures. ChemSusChem 1, 643–650.Web of SciencePubMedCrossrefGoogle Scholar

  • 18.

    Yong, Z., Rodrigues, A.E., 2002. Hydrotalcite-like compounds as adsorbents for carbon dioxide. Energy Conversion and Management 43, 1865–1876.CrossrefGoogle Scholar

  • 19.

    Zevenhoven, R., Kohlmann, J., 2002. Direct dry mineral carbonation for CO2 emission reduction in Finland. 27th International Technical Conference on Coal Utilization & Fuel Systems Clearwater (FL), USA, March 4–7, 2002.Google Scholar

  • 20.

    Zhenissova, A., Micheli, F., Rossi, L., Stendardo, S., Foscolo, P.U., Gallucci, K., 2014. Experimental evaluation of Mg- and Ca-based synthetic sorbents for CO2 capture. Chemical Engineering Research and Design 92, 727–740.CrossrefGoogle Scholar

  • 21.

    http://webbook.nist.gov/chemistry/ (Accessed February 9, 2015).Google Scholar

About the article

Published Online: 2015-04-28

Published in Print: 2015-06-01

Citation Information: International Journal of Chemical Reactor Engineering, Volume 13, Issue 2, Pages 143–152, ISSN (Online) 1542-6580, ISSN (Print) 2194-5748, DOI: https://doi.org/10.1515/ijcre-2014-0131.

Export Citation

©2015 by De Gruyter.Get Permission

Comments (0)

Please log in or register to comment.
Log in