Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao

12 Issues per year


IMPACT FACTOR 2016: 0.623
5-year IMPACT FACTOR: 0.761

CiteScore 2016: 0.58

SCImago Journal Rank (SJR) 2016: 0.224
Source Normalized Impact per Paper (SNIP) 2016: 0.297

Online
ISSN
1542-6580
See all formats and pricing
More options …

Computational Fluid Dynamics-Based Hydrodynamics Studies in Packed Bed Columns: Current Status and Future Directions

Jameson Malang
  • Corresponding author
  • Department of Foundation Engineering and Science, Curtin University Sarawak, Miri, Sarawak, Malaysia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Perumal KumarORCID iD: http://orcid.org/0000-0002-1734-4788 / Agus Saptoro
Published Online: 2015-06-02 | DOI: https://doi.org/10.1515/ijcre-2014-0121

Abstract

A careful review of the literature reveals that extensive research has been done on the hydrodynamics in packed bed columns using turbulence models. It can be noted that the choice of turbulence model is influenced by the number of phases, type of fluid, Reynolds number range and the type of packing. Thus, comparison of turbulence models for the selection of a suitable model assumes great importance for the better prediction of flow pattern. This is due to the fact that poor prediction of the flow pattern can lead to a limited heat and mass transfer model as the rate of transfer processes in packed bed is governed by the hydrodynamics of the packed bed. The aim of this paper is to give a review of the computational fluid dynamics (CFD)-based hydrodynamics studies of packed bed columns with the primary interest of studying pressure drop and drag coefficient in packed beds. From the literature survey in Science Direct database, more than 48,000 papers related to packed bed columns have been published with more than 3,000 papers focused on the hydrodynamic studies of the bed to date. Unfortunately, there are only a few studies reported on the hydrodynamics of packed columns under supercritical fluid condition. Therefore, it is imperative that the future work has to focus on the hydrodynamics of supercritical packed column and particularly on the selection of suitable turbulence model.

Keywords: CFD; packed beds; turbulence models; hydrodynamics

References

  • 1.

    Atmakidis, T., Kenig E.Y., 2009. CFD-based analysis of the wall effect on the pressure drop in packed beds with moderate tube/particle diameter ratios in the laminar flow regime. Chemical Engineering Journal 155, 404–410.CrossrefGoogle Scholar

  • 2.

    Augier, F., Idoux F., Delenne J.Y., 2010. Numerical simulations of transfer and transport properties inside packed beds of spherical particles. Chemical Engineering Science 65, 1055–1064.CrossrefGoogle Scholar

  • 3.

    Bai, H., Theuerkauf, J., Gillis, P.A., Witt, P.M., 2009. A coupled DEM AND CFD simulation of flow field and pressure drop in fixed bed reactor with randomly packed catalyst particles. Industrial & Engineering Chemistry Research 48, 4060–4074.CrossrefGoogle Scholar

  • 4.

    Baker, M.J., Tabor, G.R., 2010. Computational analysis of transitional air flow through packed columns of spheres using the finite volume technique. Computers & Chemical Engineering 34, 878–885.CrossrefGoogle Scholar

  • 5.

    Baker, M.J., Young, P.G., Tabor, G.R., 2011. Image based meshing of packed beds of cylinders at low aspect ratios using 3d MRI coupled with computational fluid dynamics. Computers & Chemical Engineering 35, 1969–1977.CrossrefGoogle Scholar

  • 6.

    Brucato, A., Grisafi, F., Montante, G., 1998. Particle drag coefficients in turbulent fluids. Chemical Engineering Science 53, 3295–3314.CrossrefGoogle Scholar

  • 7.

    Brunazzin, E. Paglianti, A., 1997. Mechanistic pressure drop model for columns containing structured packings. AIChE Journal 43, 317–327.CrossrefGoogle Scholar

  • 8.

    Calis, H.P.A., Nijenhuis, J., Paikert, B.C., Dautzenberg, F.M., van den Bleek, C.M., 2001. CFD modelling and experimental validation of pressure drop and flow profile in a novel structured catalytic reactor packing. Chemical Engineering Science 56, 1713–1720.CrossrefGoogle Scholar

  • 9.

    Clamen, A. Gauvin, W.H., 1969. Effects of turbulence on the drag coefficients of spheres in a supercritical flow regime. AIChE Journal 15, 184–189.CrossrefGoogle Scholar

  • 10.

    Coussirat, M., Guardo, A., Mateos, B., Egusquiza, E., 2007. Performance of stress-transport models in the prediction of particle-to-fluid heat transfer in packed beds. Chemical Engineering Science 62, 6897–6907.CrossrefGoogle Scholar

  • 11.

    Daly, B.J. Harlow, F.H., 1970. Transport equations in turbulence. Physics of Fluids 1958–1988 13, 2634–2649.CrossrefGoogle Scholar

  • 12.

    Dixon, A.G., Nijemeisland, M., Stitt, E.H., 2013. Systematic mesh development for 3D CFD simulation of fixed beds: Contact points study. Computers & Chemical Engineering 48, 135–153.CrossrefGoogle Scholar

  • 13.

    Dixon, A.G., Walls, G., Stanness, H., Nijemeisland, M., Stitt, E.H., 2012. Experimental validation of high Reynolds number CFD simulations of heat transfer in a pilot-scale fixed bed tube. Chemical Engineering Journal 200–202, 344–356.CrossrefGoogle Scholar

  • 14.

    Eppinger, T., Seidler, K., Kraume, M., 2011. DEM-CFD simulations of fixed bed reactors with small tube to particle diameter ratios. Chemical Engineering Journal 166, 324–331.CrossrefGoogle Scholar

  • 15.

    Fernandes, J., Lisboa, P.F., Simões, P.C., Mota, J.P.B., Saatdjian, E., 2009. Application of CFD in the study of supercritical fluid extraction with structured packing: Wet pressure drop calculations. The Journal of Supercritical Fluids 50, 61–68.CrossrefGoogle Scholar

  • 16.

    Fernandes, J., Ruivo, R., Mota, J.P.B. Simões, P., 2007. Non-isothermal dynamic model of a supercritical fluid extraction packed column. The Journal of Supercritical Fluids 41, 20–30.CrossrefGoogle Scholar

  • 17.

    Fernandes, J., Simões, P.C., Mota, J.P.B., Saatdjian, E., 2008. Application of CFD in the study of supercritical fluid extraction with structured packing: Dry pressure drop calculations. The Journal of Supercritical Fluids 47, 17–24.CrossrefGoogle Scholar

  • 18.

    Guardo, A., Coussirat, M., Larrayoz, M.A., Recasens, F., Egusquiza, E., 2005. Influence of the turbulence model in CFD modeling of wall-to-fluid heat transfer in packed beds. Chemical Engineering Science 60, 1733–1742.CrossrefGoogle Scholar

  • 19.

    Haghshenas Fard, M., Zivdar, M., Rahimi, R., Nasr Esfahani, M., 2009. Numerical simulation of hydrodynamics parameters of the packed columns: Effect of geometrical characteristics on pressure drop. World Applied Sciences Journal 7, 1439–1445.Google Scholar

  • 20.

    Haghshenas Fard, M., Zivdar, M, Rahimi, R., Nasr Esfahani, M., Afacan, A., Nandakumar, K., Chuang, K.T., 2007. CFD simulation of mass transfer efficiency and pressure drop in a structured packed distillation column. Chemical Engineering & Technology 30, 854–861.CrossrefGoogle Scholar

  • 21.

    Hosseini, S.H., Shojaee, S., Ahmadi, G., Zivdar, M., 2012. Computational fluid dynamics studies of dry and wet pressure drops in structured packings. Journal of Industrial and Engineering Chemistry 18, 1465–1473.CrossrefGoogle Scholar

  • 22.

    Iliuta, I., Larachi, F., 2001. Mechanistic model for structured-packing-containing columns:  irrigated pressure drop, liquid holdup, and packing fractional wetted area. Industrial & Engineering Chemistry Research 40, 5140–5146.CrossrefGoogle Scholar

  • 23.

    Jafari, A., Zamankhan, P., Mousavi, S.M., Pietarinen, K., 2008. Modeling and CFD simulation of flow behavior and dispersivity through randomly packed bed reactors. Chemical Engineering Journal 144, 476–482.CrossrefGoogle Scholar

  • 24.

    Khosravi Nikou, M.R., Ehsani, M.R., 2008. Turbulence models application on CFD simulation of hydrodynamics, heat and mass transfer in a structured packing. International Communications in Heat and Mass Transfer 35, 1211–1219.CrossrefGoogle Scholar

  • 25.

    Koh, J.-H., Guiochon, G., 1998. Effect of the column length on the characteristics of the packed bed and the column efficiency in a dynamic axial compression column. Journal of Chromatography A 796, 41–57.CrossrefGoogle Scholar

  • 26.

    Launder, B.E., Spalding, D.B., 1974. The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering 3, 269–289.CrossrefGoogle Scholar

  • 27.

    Le Clair, B.P., Hamielec, A.E., Pruppacher, H.R., 1970. A numerical study of the drag on a sphere at low and intermediate Reynolds numbers. Journal of the Atmospheric Sciences 27, 308–315.CrossrefGoogle Scholar

  • 28.

    Lloyd, B., Boehm, R., 1994. Flow and heat transfer around a linear array of spheres. Numerical Heat Transfer, Part A: Applications 26, 237–252.CrossrefGoogle Scholar

  • 29.

    Logtenberg, S.A., Dixon, A.G., 1998. Computational fluid dynamics studies of fixed bed heat transfer. Chemical Engineering and Processing: Process Intensification 37, 7–21.CrossrefGoogle Scholar

  • 30.

    Logtenberg, S.A., Nijemeisland, M., Dixon, A.G., 1999. Computational fluid dynamics simulations of fluid flow and heat transfer at the wall–particle contact points in a fixed-bed reactor. Chemical Engineering Science 54, 2433–2439.CrossrefGoogle Scholar

  • 31.

    Lopes, R.J.G., Quinta-Ferreira, R.M., 2009. Turbulence modelling of multiphase flow in high-pressure trickle-bed reactors. Chemical Engineering Science 64, 1806–1819.CrossrefGoogle Scholar

  • 32.

    Magnico, P., 2009. Pore-scale simulations of unsteady flow and heat transfer in tubular fixed beds. AIChE Journal 55, 849–867.CrossrefGoogle Scholar

  • 33.

    Mahr, B. Mewes, D., 2007. CFD Modelling and calculation of dynamic two-phase flow in columns equipped with structured packing. Chemical Engineering Research and Design 85, 1112–1122.CrossrefGoogle Scholar

  • 34.

    Mewes, D., Loser, T., Millies, M., 1999. Modelling of two-phase flow in packings and monoliths. Chemical Engineering Science 54, 4729–4747.CrossrefGoogle Scholar

  • 35.

    Montillet, A., Akkari, E., Comiti, J., 2007. About a correlating equation for predicting pressure drops through packed beds of spheres in a large range of Reynolds numbers. Chemical Engineering and Processing: Process Intensification 46, 329–333.CrossrefGoogle Scholar

  • 36.

    Neve, R.S., 1986. The importance of turbulence macroscale in determining the drag coefficient of spheres. International Journal of Heat and Fluid Flow 7, 28–36.CrossrefGoogle Scholar

  • 37.

    Neve, R.S., Shansonga, T., 1989. The effects of turbulence characteristics on sphere drag. International Journal of Heat and Fluid Flow 10, 318–321.CrossrefGoogle Scholar

  • 38.

    Nijemeisland, M., Dixon, A.G. 2004. CFD study of fluid flow and wall heat transfer in a fixed bed of spheres. AIChE Journal 50, 906–921.CrossrefGoogle Scholar

  • 39.

    Perrut, M., 2000. Supercritical fluid applications: Industrial developments and economic issues. Industrial & Engineering Chemistry Research 39, 4531–4535.CrossrefGoogle Scholar

  • 40.

    Rahbar-Kelishami, A. Bahmanyar, H., 2012. New predictive correlation for mass transfer coefficient in structured packed extraction columns. Chemical Engineering Research and Design 90, 615–621.CrossrefGoogle Scholar

  • 41.

    Raynal, L., Boyer, C., Ballaguet, J.-P., 2004. Liquid holdup and pressure drop determination in structured packing with CFD simulations. The Canadian Journal of Chemical Engineering 82, 871–879.CrossrefGoogle Scholar

  • 42.

    Raynal, L., Royon-Lebeaud, A., 2007. A multi-scale approach for CFD calculations of gas–liquid flow within large size column equipped with structured packing. Chemical Engineering Science 62, 7196–7204.CrossrefGoogle Scholar

  • 43.

    Reddy, R.K., Joshi, J.B., 2008. CFD modeling of pressure drop and drag coefficient in fixed and expanded beds. Chemical Engineering Research and Design 86, 444–453.CrossrefGoogle Scholar

  • 44.

    Reddy, R.K., Joshi, J.B., 2010. CFD modeling of pressure drop and drag coefficient in fixed beds: Wall effects. Particuology 8, 37–43.CrossrefGoogle Scholar

  • 45.

    Riefler, N., Heiland, M., Räbiger, N., Fritsching, U., 2012. Pressure loss and wall shear stress in flow through confined sphere packings. Chemical Engineering Science 69, 129–137.CrossrefGoogle Scholar

  • 46.

    Robbins, D.J., El-Bachir, M.S., Gladden, L.F., Cant, R.S., von Harbou, E., 2012. CFD modeling of single-phase flow in a packed bed with MRI validation. AIChE Journal 58, 3904–3915.CrossrefGoogle Scholar

  • 47.

    Rocha, J.A., Bravo, J.L., Fair, J.R., 1993. Distillation columns containing structured packings: a comprehensive model for their performance. 1. Hydraulic models. Industrial & Engineering Chemistry Research 32, 641–651.CrossrefGoogle Scholar

  • 48.

    Romkes, S.J.P., Dautzenberg, F.M., van den Bleek, C.M., Calis, H.P.A., 2003. CFD modelling and experimental validation of particle-to-fluid mass and heat transfer in a packed bed at very low channel to particle diameter ratio. Chemical Engineering Journal 96, 3–13.CrossrefGoogle Scholar

  • 49.

    Said, W., Nemer, M., Clodic, D., 2011. Modeling of dry pressure drop for fully developed gas flow in structured packing using CFD simulations. Chemical Engineering Science 66, 2107–2117.CrossrefGoogle Scholar

  • 50.

    Senol, A., 2001. Mass transfer efficiency of randomly-packed column: modeling considerations. Chemical Engineering and Processing: Process Intensification 40, 41–48.CrossrefGoogle Scholar

  • 51.

    Spalart, P., Allmaras, S., 1992. A One-Equation Turbulence Model for Aerodynamic Flows, 30th Aerospace Sciences Meeting and Exhibit, American Institute of Aeronautics and Astronautics.Google Scholar

  • 52.

    Stichlmair, J., Bravo, J.L., Fair, J.R., 1989. General model for prediction of pressure drop and capacity of countercurrent gas/liquid packed columns. Gas Separation and Purification 3, 19–28.CrossrefGoogle Scholar

  • 53.

    Subramanian, K., Paschke, S., Repke, J.U., Wozny, G., 2009. Drag force modelling in CFD simulation to gain insight of packed columns. Chemical Engineering Transactions 17, 561–566.Google Scholar

  • 54.

    Towler, G., Sinnot, R.K., 2013. Chemical Engineering Design: Principles, Practice and Economics of Plant and Process Design, USA: Elsevier.Google Scholar

  • 55.

    Wagner, I., Stichlmair, J., Fair, J.R., 1997. Mass transfer in beds of modern, high-efficiency random packings. Industrial and Engineering Chemistry Research 36, 227–237.CrossrefGoogle Scholar

  • 56.

    Wen, X., Akhter, S., Afacan, A., Nandakumar, K., Chuang, K.T., 2007. CFD modeling of columns equipped with structured packings: I. Approach based on detailed packing geometry. Asia-Pacific Journal of Chemical Engineering 2, 336–344.CrossrefGoogle Scholar

  • 57.

    Wentz, C.A., Thodos, G., 1963. Total and form drag friction factors for the turbulent flow of air through packed and distended beds of spheres. AIChE Journal 9, 358–361.CrossrefGoogle Scholar

  • 58.

    Zheng, D., He, X., Che, D., 2007. CFD simulations of hydrodynamic characteristics in a gas–liquid vertical upward slug flow. International Journal of Heat and Mass Transfer 50, 4151–4165.CrossrefGoogle Scholar

  • 59.

    Zobel, N., Eppinger, T., Behrendt, F., Kraume, M., 2012. Influence of the wall structure on the void fraction distribution in packed beds. Chemical Engineering Science 71, 212–219.CrossrefGoogle Scholar

About the article

Published Online: 2015-06-02

Published in Print: 2015-09-01


Citation Information: International Journal of Chemical Reactor Engineering, Volume 13, Issue 3, Pages 289–303, ISSN (Online) 1542-6580, ISSN (Print) 2194-5748, DOI: https://doi.org/10.1515/ijcre-2014-0121.

Export Citation

©2015 by De Gruyter. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in