Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao

12 Issues per year

IMPACT FACTOR 2017: 0.881
5-year IMPACT FACTOR: 0.908

CiteScore 2017: 0.86

SCImago Journal Rank (SJR) 2017: 0.306
Source Normalized Impact per Paper (SNIP) 2017: 0.503

See all formats and pricing
More options …
Volume 13, Issue 3


Volume 9 (2011)

Volume 8 (2010)

Volume 7 (2009)

Volume 6 (2008)

Volume 5 (2007)

Volume 4 (2006)

Volume 3 (2005)

Volume 2 (2004)

Volume 1 (2002)

A Study on the Production of Isophthalic Acid from M-xylene under the Catalysis of Cobalt and H3PW12O40/Carbon Modified by HNO3 Solution

Zhi-hao Wang
  • State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Meilong Road 300, Shanghai 200237, P. R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Zhi-lin Yang
  • State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Meilong Road 300, Shanghai 200237, P. R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Shi-ming Wu
  • State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Meilong Road 300, Shanghai 200237, P. R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Xiang-li Long
  • Corresponding author
  • State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Meilong Road 300, Shanghai 200237, P. R. China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-08-04 | DOI: https://doi.org/10.1515/ijcre-2015-0032


The oxidation of m-xylene(MX) to isophthalic acid(IPA) catalyzed by phosphotungstic acid(HPW) supported on modified activated carbon was investigated. The activated carbon loading with HPW is modified by HNO3 solution to ameliorate its catalytic capability in the oxidation of MX to IPA. Experiments have been carried out to study the effects of modification conditions, such as HNO3 concentration, impregnation time, impregnation temperature, activation temperature and activation time, on the catalytic performance of activated carbon. The experimental results demonstrate that the carbon sample impregnated in 10%(vol) HNO3 solution at 45°C for 8 h followed by calcined at 700°C for 4 h has the best catalytic capability. The characterization results imply that the specific surface area and micropores of the carbon samples decrease after being treated with HNO3 solution. But the acidic functional groups on the activated carbon surface increase, which play a vital role in improving the catalytic ability of the HPW/C catalyst in the oxidization of m-xylene to IPA.

Keywords: phosphotungstic acid; m-xylene; isophthalic acid; activated carbon; catalytic oxidation


  • 1 Adib, F., Bagreev, A., Bandosz, T.J., 2000. Analysis of the Relationship between H2S Removal Capacity and Surface Properties of Unimpregnated Activated Carbons. Environ. Sci. Tech. 34, 686–692.Google Scholar

  • 2. Aggarwal, D., Goyaletal, M., 1999. Adsorption of Chromium by Activated Carbon from Aqueous Solution. Carbon 37, 1989–1997.Google Scholar

  • 3. Badday, A.S., Abdullah, A.Z., Lee, KT., 2014. Transesterification of Crude Jatropha Oil by Activated Carbon-Supported Heteropolyacid Catalyst in an Ultrasound-assisted Reactor System. Renew. Energy 62: 10–17.Web of ScienceGoogle Scholar

  • 4. Bamoharram, F.F., Ahmadpour, A., Heravi, M.M., Charkhi, M.J.S., 2011. Bulk and Activated Carbon-Supported Tungstophosphoric Acid as Recyclable and Green Catalyst for One-Pot Synthesis of beta-Acetamido Ketones and Esters. E-J. Chem. 8, 689–696.Google Scholar

  • 5. Bashkova, S., Bagreev, A., Bandosz, T.J., 2005. Catalytic Properties of Activated Carbon Surface in the Process of Adsorption/Oxidation of Methyl Mercaptan. Catal. Today 99, 323–328.Google Scholar

  • 6. Biniak, S., Pakula, M., Szymaanski, G.S., Swiatkowski, A., 1999. Effect of Activated Carbon Surface Oxygen- and/or Nitrogen-Containing Groups on Adsorption of Copper(II) Ions from Aqueous Solution. Langmuir 15, 6117–6122.Google Scholar

  • 7. Boehm, H.P., 1994. Some Aspects of the Surface Chemistry of Carbon Blacks and Others Carbons. Carbon 53, 759–768.Google Scholar

  • 8. Burri, D.R., Jun, K.W., Kim, Y.H., Kim, J.M., Park, S.E., Yoo, J.S., 2002. Cobalt Catalyst Heterogenized on SBA-15 for p-xylene Oxidation. Chem. Lett. 2, 212–213.Google Scholar

  • 9. Cavani, F., 1998. Heteropolycompound-Based Catalysts: A Blend of Acid and Oxidizing Properties. Catal Today 41, 73–86.Google Scholar

  • 10. Chen, S.X., Xu, R.M., Huang, H.X., Yi, F.Y., Zhou, X., Zeng, H.M., 2007. Reduction–Adsorption Behavior of Platinum Ions on Activated Carbon Fibers. J. Mater. Sci. 42, 9572–9581.Web of ScienceGoogle Scholar

  • 11. Choi, J.H., Kim, J.K., Park, D.R., Kang, T.H., Song, J.H., Song, I.K., 2013. Redox Properties and Oxidation Catalysis of Transition Metal-substituted ɑ-K5PW11O39(M∙OH2) (M = MnII, CoII, NiII, and ZnII) Keggin Heteropolyacid Catalysts for Liquid-phase Oxidation of 2-Propanol. J. Mol. Catal. A: Chem. 371, 111–117.Web of ScienceGoogle Scholar

  • 12. Collins, J., Ngo, T., Qu, D.Y., Foster, M., 2013. Spectroscopic Investigations of Sequential Nitric Acid Treatments on Granulated Activated Carbon: Effects of Surface Oxygen Groups on P Density. Carbon 57, 174–183.Web of ScienceGoogle Scholar

  • 13. Domingo-García, M., López Garzón, F.J., Pérez-Mendoza, M.J., 2002. On the Characterization of Chemical Surface Groups of Carbon Materials. J. Coll. Interf. Sci. 248, 116–122.Google Scholar

  • 14. Falcon, H., Campos-Martin, J.M., Al-Zahrani, S.M., Fierro, J.L.G., 2010. Liquid-Phase Oxidation of P-xylene using N-hydroxyimides. Catal. Comm. 12, 5–8.Google Scholar

  • 15. Fallah, R.N., Azizian, S., 2012. Removal of Thiophenic Compounds from Liquid Fuel by Different Modified Activated Carbon Cloths. Fuel Proc. Tech. 93, 45–53.Google Scholar

  • 16. Hayati, B., Mahmoodi, N.M., 2012. Modification of Activated Carbon by the Alkaline Treatment to Remove the Dyes from Wastewater: Mechanism, Isotherm and Kinetic. Desalin. Water Treat. 47, 322–333.Google Scholar

  • 17. Ishii, Y., Yoshino, Y., Hayashi, Y., 1997. Catalytic Oxidation of Alkylbenzenes with Molecular Oxygen under Normal Pressure and Temperature by N-hydroxyphthalimide Combined with Co(OAc)2. J. Org. Chem. 62, 6810–6813.Google Scholar

  • 18. Jacob, C.R., Varkey, S.P., Ratnasamy, P. 1999. Oxidation of Para-xylene over Zeolite-Encapsulated Copper and Manganese Complexes. Appl. Catal. A: Chem. 182, 91–96.Google Scholar

  • 19. Langley, L.A., Fairbrother, D.H., 2007. Effect of Wet Chemical Treatments on the Distribution of Surface Oxides on Carbonaceous Materials. Carbon 45, 47–54.Web of ScienceGoogle Scholar

  • 20. Long, X.L., Wang, Z.H., Wu, S.Q., Wu, S.M., Lv H.F., Yuan, W.K., 2014. Production of Isophthalic Acid from M-xylene Oxidation under the Catalysis of the H3PW12O40/Carbon and Cobalt Catalytic System. J. Ind. Eng. Chem. 20: 100–107.Google Scholar

  • 21. Long, X.L., Xin, Z.L., Wang, H.X., Xiao, W.D., Yuan, W.K., 2004. Simultaneous Removal of NO and SO2 with Hexamminecobalt(II) Solution Coupled with the Hexamminecobalt(II) Regeneration Catalyzed by Activated Carbon. Appl. Catal. B: Environ. 54, 25–32.Google Scholar

  • 22. Lv, H.F., Wu, S.Q., Liu, N., Long, X.L., Yuan, W.K., 2011. A Study on the M-xylene Oxidation to Isophthalic Acid under the Catalysis of Bromine-free Homogeneous Catalytic System. Chem. Eng. J. 172, 1045–1053.Web of ScienceGoogle Scholar

  • 23. Palermo, V., Romanelli, G.P., Vazquez, P.G., 2013. Mo-based Keggi Heteropolyacids as Catalysts in the Green and Selective Oxidation of Diphenyl Sulfide. J. Mol. Catal. A: Chem. 373, 142–150.Google Scholar

  • 24. Park, D.S., Kwak, B.K., Kim, N.D., Park, J.R., Cho, J.H., Oh, S., Yi J., 2012. Capturing Coke Precursors in a Pd Lattice: A Carbon-Supported Heteropoly Acid Catalyst for the Dehydration of Glycerol into Acrolein. Chem. Cat. Chem. 4, 836–843.Google Scholar

  • 25. Pereira, M.F.R., Orfao, J.J.M., Figueiredo, J.L., 1999. Oxidative Dehydrogenation of Ethylbenzene on Activated Carbon Catalysts. I. Influence of Surface Chemical Groups. Appl. Catal. A: Gen. 184, 153–160.Google Scholar

  • 26. Przepiorsk, J., 2006. Enhanced Adsorption of Phenol from Water by Ammonia-treated Activated Carbon. J. Hazard Mater. 135, 453–456.Google Scholar

  • 27. Razvigorova, M., Budinova, T., Petrov, N., Minkova, V., 1998. Purification of Water by Activated Carbons from Apricot Stones, Lignites, and Anthracite. Water Res. 32, 2135–2139.Google Scholar

  • 28. ShamsiJazeyi, H., Kaghazchi, T., 2010. Investigation of Nitric Acid Treatment of Activated Carbon for Enhanced Aqueous Mercury Removal. J. Ind. Eng. Chem. 16, 852–858.Google Scholar

  • 29. S′wiatkowski, A., Grajek, H., Pakula, M., Biniak, S., Witkiewicz, Z., 2002. Voltammetric Studies of the Gradual Thermal Decomposition of Activated Carbon Surface Oxygen Complexes. Colloids Surf. 208, 313–320.Google Scholar

  • 30. Velásquez, J.D.J.D., Suárez, L.M.C., Figueiredo, J.L., 2006. Oxidative Dehydrogenation of Isobutane over Activated Carbon Catalysts. Appl. Catal. A: Gen. 311, 51–57.Google Scholar

  • 31. Wentzel, B.B., Donners, M.P.J., Alsters, P.L., Feiters, M.C., Nolte, R.J.M., 2000. N-hydroxyphthalimide/cobalt(II) Catalyzed Low Temperature Benzylic Oxidation using Molecular Oxygen. Tetrahedron 56, 7797–7803.Google Scholar

  • 32. Xiao, Y., Zhang X.Y., Wang Q.B., Tan Z., Guo C.C., Deng W., Liu, Z.G., Zhang, H.F., 2011. The Preparation of Terephthalic Acid by Solvent-free Oxidation of P-xylene with Air over T(p-Cl)PPMnCl and Co(OAc)2. Chin. Chem. Lett. 22, 135–138.Web of ScienceGoogle Scholar

  • 33. Zawadzki, J., 1989. Infrared Spectroscopy in Surface Chemistry of Carbons. Chemistry and Physics of Carbon. Vol. 21, Dekker, New York, pp. 147–380.Google Scholar

About the article

Published Online: 2015-08-04

Published in Print: 2015-09-01

Funding: The present work is supported by the NSFC (No. 21176081).

Citation Information: International Journal of Chemical Reactor Engineering, Volume 13, Issue 3, Pages 413–425, ISSN (Online) 1542-6580, ISSN (Print) 2194-5748, DOI: https://doi.org/10.1515/ijcre-2015-0032.

Export Citation

©2015 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Zhou-wen Fang, Di Wen, Zhi-hao Wang, and Xiang-li Long
Korean Journal of Chemical Engineering, 2018
Xin-zhi Zhou, Zhi-hao Wang, Zhou-wen Fang, Hua-jie Liu, and Xiang-li Long
Industrial & Engineering Chemistry Research, 2018
Zhou-wen Fang, Hua-jie Liu, Zhi-hao Wang, Di Wen, and Xiang-li Long
Journal of Industrial and Engineering Chemistry, 2018

Comments (0)

Please log in or register to comment.
Log in