Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao

12 Issues per year

IMPACT FACTOR 2017: 0.881
5-year IMPACT FACTOR: 0.908

CiteScore 2017: 0.86

SCImago Journal Rank (SJR) 2017: 0.306
Source Normalized Impact per Paper (SNIP) 2017: 0.503

See all formats and pricing
More options …
Volume 14, Issue 1

Performance of a Catalytic Gas–Solid Fluidized Bed Reactor in the Presence of Interparticle Forces

Jaber Shabanian / Jamal Chaouki
Published Online: 2015-04-03 | DOI: https://doi.org/10.1515/ijcre-2014-0106


The influence of interparticle forces (IPFs) on the hydrodynamics of a gas–solid fluidized bed was experimentally investigated with the help of a polymer coating approach. The results showed that the presence of IPFs in the bed can considerably change the hydrodynamic parameters. The tendency of the fluidizing gas passing through the bed in the emulsion phase increased with IPFs in the bubbling regime. The performance of a fluidized bed reactor was then studied through simulation of a reactive catalytic system using three different hydrodynamic models: (a) a simple two-phase flow model, (b) a dynamic two-phase flow model, and (c) a dynamic two-phase flow model, integrating the effects of superficial gas velocity and IPFs. The simple two-phase flow model was found to underestimate the reactor performance for catalytic reaction most likely due to the oversimplified assumptions involved in this model. Also, the simulation results showed that modification of the bed hydrodynamics due to IPFs resulted in a better performance for a bubbling fluidized bed reactor. This suggests that the hydrodynamic models should take into account the effects of superficial gas velocity and variation in the ratio of the magnitude of IPFs/hydrodynamic forces, due to any operational reason, to yield a more reliable evaluation of the performance of the fluidized bed reactor.

Keywords: gas–solid fluidized bed reactor; interparticle forces; reactor simulation; two-phase flow model


  • 1.

    Werther J. Effect of gas distributor on the hydrodynamics of gas fluidized beds. Ger Chem Eng 1978;1:166–74.Google Scholar

  • 2.

    Cui H, Sauriol P, Chaouki J. High temperature fluidized bed reactor: measurements, hydrodynamics and simulation. Chem Eng Sci 2003;58:1071–7.CrossrefGoogle Scholar

  • 3.

    Rietema K, Piepers HW. The effect of interparticle forces on the stability of gas-fluidized beds–I. Exp Evid Chem Eng Sci 1990;45:1627–39.CrossrefGoogle Scholar

  • 4.

    Rietema K. The dynamics of fine powders. New York: Elsevier Science Publishers Ltd, 1991.Google Scholar

  • 5.

    Poletto M, Salatino P, Massimilla L. Fluidization of solids with CO2 at pressures and temperatures ranging from ambient to nearly critical conditions. Chem Eng Sci 1993;48:617–21.CrossrefGoogle Scholar

  • 6.

    Tardos G, Pfeffer R. Chemical reaction induced agglomeration and defluidization of fluidized beds. Powder Technol 1995;85:29–35.CrossrefGoogle Scholar

  • 7.

    Xie HY, Geldart D. Fluidization of FCC powders in the bubble-free regime: effect of types of gases and temperature. Powder Technol 1995;82:269–77.CrossrefGoogle Scholar

  • 8.

    Formisani B, Girimonte R, Mancuso L. Analysis of the fluidization process of particle beds at high temperature. Chem Eng Sci 1998;53:951–61.CrossrefGoogle Scholar

  • 9.

    Lettieri P, Yates JG, Newton D. The influence of interparticle forces on the fluidization behaviour of some industrial materials at high temperature. Powder Technol 2000;110:117–27.CrossrefGoogle Scholar

  • 10.

    Cui H, Chaouki J. Effects of temperature on local two-phase flow structure in bubbling and turbulent fluidized beds of FCC particles. Chem Eng Sci 2004;59:3413–22.CrossrefGoogle Scholar

  • 11.

    Cui H, Chaouki J. Interparticle forces in high temperature fluidization of Geldart a particles. China Particuology 2004;2:113–18.CrossrefGoogle Scholar

  • 12.

    Xu C, Zhu JX. Effects of gas type and temperature on fine particle fluidization. China Particuology 2006;4:114–21.CrossrefGoogle Scholar

  • 13.

    Zhong Y, Wang Z, Guo Z, Tang Q. Defluidization behavior of iron powders at elevated temperature: influence of fluidizing gas and particle adhesion. Powder Technol 2012;230:225–31.CrossrefGoogle Scholar

  • 14.

    Shabanian J, Sauriol P, Rakib A, Chaouki J. Characterization of gas-solid fluidization at high temperature by analysis of pressure signals. In: Proceedings of the 11th international conference on fluidized bed technology (CFB-11). Beijing, China, 2014.Google Scholar

  • 15.

    Krupp H. Particle adhesion: theory and experiment. Adv Colloid Interface Sci 1967;1:111–239.CrossrefGoogle Scholar

  • 16.

    Xie HY. The role of interparticle forces in the fluidization of fine particles. Powder Technol 1997;94:99–108.CrossrefGoogle Scholar

  • 17.

    Bartels M, Lin W, Nijenhuis J, Kapteijn F, van Ommen JR. Agglomeration in fluidized beds at high temperatures: mechanisms, detection and prevention. Prog Energy Combust Sci 2008;34:633–66.CrossrefGoogle Scholar

  • 18.

    Siegell JH. High-temperature de fluidization. Powder Technol 1984;38:13–22.CrossrefGoogle Scholar

  • 19.

    Shabanian J, Fotovat F, Bouffard J, Chaouki J. Fluidization behavior in a gas-solid fluidized bed with thermally induced inter-particle forces. In: Knowlton TM, editor. Proceedings of the 10th international conference on circulating fluidized beds and fluidization technology (CFB-10). Sunriver, OR: Sunriver Resort, 2011.Google Scholar

  • 20.

    Shabanian J, Chaouki J. Pressure signals in a gas-solid fluidized bed with thermally induced inter-particle forces. In: Kuipers JAM, Mudde RF, van Ommen JR, Deen NG, editors. Proceedings of the 14th international conference on fluidization – from fundamentals to products. The Netherlands: Noordwijkerhout, 2013.Google Scholar

  • 21.

    Bouffard J, Bertrand F, Chaouki J, Giasson S. Control of particle cohesion with a polymer coating and temperature adjustment. AIChE J 2012;57:3685–96.CrossrefGoogle Scholar

  • 22.

    Mostoufi N, Cui H, Chaouki J. A comparison of two- and single-phase models for fluidized-bed reactors. Ind Eng Chem Res 2001;40:5526–32.CrossrefGoogle Scholar

  • 23.

    Toomey RD, Johnstone HF. Gaseous fluidization of solid particles. Chem Eng Prog 1952;48:220–5.Google Scholar

  • 24.

    Davidson JF, Harrison D. Fluidised particles. Cambridge: Cambridge University Press, 1963.Google Scholar

  • 25.

    De Vries RJ, van Swaaij Wpm, Mantovani C, Heijkoop A. Design criteria and performance of the commercial reactor for the shell chlorine process. In: Proceedings of the second international symposium on chemical reaction engineering. Amsterdam, 1972:B9:59–69.Google Scholar

  • 26.

    Aoyagi M, Kunii D. Importance of dispersed solids in bubbles for exothermic reactions in fluidized beds. Chem Eng Commun 1974;1:191–7.CrossrefGoogle Scholar

  • 27.

    Rowe PN, Santoro L, Yates JG. The division of gas between bubble and interstitial phases in fluidised beds of fine powders. Chem Eng Sci 1978;33:133–40.CrossrefGoogle Scholar

  • 28.

    Yates JG, Newton D. Fine particle effects in a fluidized-bed reactor. Chem Eng Sci 1986;41:801–6.CrossrefGoogle Scholar

  • 29.

    Chaouki J, Gonzales A, Guy C, Klvana D. Two-phase model for a catalytic turbulent fluidized-bed reactor: application to ethylene synthesis. Chem Eng Sci 1999;54:2039–45.CrossrefGoogle Scholar

  • 30.

    Cui H, Mostoufi N, Chaouki J. Characterization of dynamic gas-solid distribution in fluidized beds. Chem Eng J 2000;79:133–43.CrossrefGoogle Scholar

  • 31.

    Cui H, Mostoufi N, Chaouki J. Gas and solids between dynamic bubble and emulsion in gas-fluidized beds. Powder Technol 2001;120:12–20.CrossrefGoogle Scholar

  • 32.

    Jafari R, Sotudeh-Gharebagh R, Mostoufi N. Performance of the wide-ranging models for fluidized bed reactors. Adv Powder Technol 2004;15:533–48.CrossrefGoogle Scholar

  • 33.

    Geldart D. Types of gas fluidization. Powder Technol 1973;7:285–92.CrossrefGoogle Scholar

  • 34.

    Cui H, Mostoufi N, Chaouki J. Comparison of measurement technique of local particle concentration for gas–solid fluidization. In: Kwauk M, Li J, Yang WC, editors. Proceedings of fluidization X. Beijing, China, 2001:779–786.Google Scholar

  • 35.

    van der Schaaf J, Schouten JC, Johnsson F, van den Bleek CM. Non-intrusive determination of bubble and slug length scales in fluidized beds by decomposition of the power spectral density of pressure time series. Int J Multiphase Flow 2002;28:865–80.CrossrefGoogle Scholar

  • 36.

    Bi HT, Grace JR. Effect of measurement method on the velocities used to demarcate the onset of turbulent fluidization. Chem Eng J Biochem Eng J 1995;57:261–71.CrossrefGoogle Scholar

  • 37.

    Clift R, Grace JR. The mechanism of bubble break-up in fluidised beds. Chem Eng Sci 1972;27:2309–10.CrossrefGoogle Scholar

  • 38.

    Ege PE. Investigation of the flow structure of turbulent fluidized beds. Ph.D. dissertation, University of Trondheim, Norway, 1995.Google Scholar

  • 39.

    Glicksman LR, McAndrews G. The effect of bed width on the hydrodynamics of large particle fluidized beds. Powder Technol 1985;42:159–67.CrossrefGoogle Scholar

  • 40.

    Krishna R, van Baten JM, Ellenberger J. Scale effects in fluidized multiphase reactors. Powder Technol 1998;100:137–46.CrossrefGoogle Scholar

  • 41.

    Rüdisüli M, Schildhauer TJ, Biollaz SMA, van Ommen JR. Scale-up of bubbling fluidized bed reactors – a review. Powder Technol 2012;217:21–38.CrossrefGoogle Scholar

  • 42.

    Kunii D, Levenspiel O. Fluidization engineering. Boston, MA: Butterworth-Heinemann, 1991.Google Scholar

  • 43.

    Li J, Wen L, Qian G, Cui H, Kwauk M, Schouten JC, et al. Structure heterogeneity, regime multiplicity and nonlinear behavior in particle-fluid systems. Chem Eng Sci 1996;51:2693–8.CrossrefGoogle Scholar

  • 44.

    Treybal RE. Mass-transfer operations. London: McGraw-Hill, 1981.Google Scholar

  • 45.

    Poling BE, Prausnitz JM, O’Connell JP. The properties of gases and liquids. New York: McGraw-Hill, 2001.Google Scholar

  • 46.

    Yaws CL. Chemical properties handbook. New York: McGraw-Hill, 1999.Google Scholar

  • 47.

    Varma RL, Saraf DN. Selective oxidation of C4 hydrocarbons to maleic anhydride. Ind Eng Chem Prod Res Dev 1979;18:7–13.CrossrefGoogle Scholar

  • 48.

    Centi G, Fornasari G, Trifiro F. N-butane oxidation to maleic anhydride on vanadium-phosphorus oxides: kinetic analysis with a tubular flow stacked-pellet reactor. Ind Eng Chem Prod Res Dev 1985;24:32–7.CrossrefGoogle Scholar

  • 49.

    Schneider P, Emig G, Hofmann H. Kinetic investigation and reactor simulation for the catalytic gas-phase oxidation of n-butane to maleic anhydride. Ind Eng Chem Res 1987;26:2236–41.CrossrefGoogle Scholar

  • 50.

    Bej SK, Rao MS. Selective oxidation of n-butane to maleic anhydride. 1. Optimization studies. Ind Eng Chem Res 1991;30:1819–24.CrossrefGoogle Scholar

  • 51.

    Sharma RK, Cresswell DL, Newson EJ. Kinetics and fixed-bed reactor modeling of butane oxidation to maleic anhydride. AIChE J 1991;37:39–47.CrossrefGoogle Scholar

  • 52.

    Mills PL, Randall HT, McCracken JS. Redox kinetics of VOPO4 with butane and oxygen using the TAP reactor system. Chem Eng Sci 1999;54:3709–22.CrossrefGoogle Scholar

  • 53.

    Huang X-F, Li C-Y, Chen B-H, Silveston PL. Transient kinetics of n-butane oxidation to maleic anhydride over a VPO catalyst. AIChE J 2002;48:846–55.CrossrefGoogle Scholar

  • 54.

    Dente M, Pierucci S, Tronconi E, Cecchini M, Ghelfi F. Selective oxidation of n-butane to maleic anhydride in fluid bed reactors: detailed kinetic investigation and reactor modelling. Chem Eng Sci 2003;58:643–8.CrossrefGoogle Scholar

  • 55.

    Lorences MJ, Patience GS, Díez FV, Coca J. Butane oxidation to maleic anhydride:  kinetic modeling and byproducts. Ind Eng Chem Res 2003;42:6730–42.CrossrefGoogle Scholar

  • 56.

    Lorences MJ, Patience GS, Díez FV, Coca J. Transient n-butane partial oxidation kinetics over VPO. Appl Catal A Gen 2004;263:193–202.CrossrefGoogle Scholar

  • 57.

    Gascón J, Valenciano R, Téllez C, Herguido J, Menéndez M. A generalized kinetic model for the partial oxidation of n-butane to maleic anhydride under aerobic and anaerobic conditions. Chem Eng Sci 2006;61:6385–94.CrossrefGoogle Scholar

  • 58.

    Shekari A, Patience GS. Transient kinetics of n-butane partial oxidation at elevated pressure. The Can J Chem Eng 2013;91:291–301.CrossrefGoogle Scholar

  • 59.

    Grace JR. Fluidized beds as chemical reactors. In: Geldart D, editor. Gas fluidization technology. Chichester: John Wiley & Sons, 1986.Google Scholar

  • 60.

    Levenspiel O. Chemical reaction engineering. 3rd ed. New York: John Wiley & Sons, 1999.Google Scholar

  • 61.

    Contractor RM. Dupont’s CFB technology for maleic anhydride. Chem Eng Sci 1999;54:5627–32.CrossrefGoogle Scholar

  • 62.

    Mars P, van Krevelen DW. Oxidations carried out by means of vanadium oxide catalysts. Chem Eng Sci 1954;3:41–59.CrossrefGoogle Scholar

  • 63.

    Buchanan JS, Sundaresan S. Kinetics and redox properties of vanadium phosphate catalysts for butane oxidation. Appl Catal 1986;26:211–26.CrossrefGoogle Scholar

About the article

Published Online: 2015-04-03

Published in Print: 2016-02-01

Citation Information: International Journal of Chemical Reactor Engineering, Volume 14, Issue 1, Pages 433–444, ISSN (Online) 1542-6580, ISSN (Print) 2194-5748, DOI: https://doi.org/10.1515/ijcre-2014-0106.

Export Citation

©2016 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Emiliya Ivanchina, Elena Ivashkina, and Galina Nazarova
Chemical Engineering Journal, 2017
Jaber Shabanian and Jamal Chaouki
Chemical Engineering Journal, 2017, Volume 313, Page 580

Comments (0)

Please log in or register to comment.
Log in