Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao

12 Issues per year

IMPACT FACTOR 2017: 0.881
5-year IMPACT FACTOR: 0.908

CiteScore 2017: 0.86

SCImago Journal Rank (SJR) 2017: 0.306
Source Normalized Impact per Paper (SNIP) 2017: 0.503

See all formats and pricing
More options …
Volume 14, Issue 1


Volume 9 (2011)

Volume 8 (2010)

Volume 7 (2009)

Volume 6 (2008)

Volume 5 (2007)

Volume 4 (2006)

Volume 3 (2005)

Volume 2 (2004)

Volume 1 (2002)

Study on the Effect of Nickel Doping on Mo-Bi Based Catalyst for Selective Oxidation of Isobutene to Methacrolein

Fang Wang
  • College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, PR China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Guangjian Wang
  • Corresponding author
  • College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, PR China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Xinshan Niu
  • College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, PR China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-10-01 | DOI: https://doi.org/10.1515/ijcre-2015-0036


Small amount of different nickel precursors (nickel nitrate or nickel molybdate) were incorporated into MoBi-based catalyst to produce a series of modified composite oxides catalysts for the selective oxidation of isobutene (IB) to methacrolein (MAL). Nickel nitrate introduction can effectively improve IB conversion and nickel molybdate introduction can remarkably enhance the selectivity of MAL. The XRD results show that nickel introduction has some influence on the catalyst structure. The catalyst modified with NiMoO4 showed the highest MAL yield of 87.8%. According to the H2-TPR, BET and XPS results, the catalyst modified with NiMoO4 exhibits lower reduction temperature, higher pore volume and better lattice oxygen mobility, which were confirmed to be responsible for excellent catalytic performance for the title reaction. In the case of an excess of O2, an empirical kinetic model was used to evaluate the rate data. The activation energy (Ea) was found to be 172.4 kJ mol−1.

Keywords: isobutene (IB); methylacrolein (MAL); selective oxidation; nickel nitrate; nickel molybdate


  • 1. Akimoto, M., Tsuneki, H., Echigoya, E., 1978. Oxygen species incorporated into methacrylaldehyde in vapor-phase catalytic oxidation of isobutylene. Nippon Kagaku Kaishi 6, 805–810.Google Scholar

  • 2. Akimoto, M., Echigoya, E., 1979. Mechanism for incorporation of oxygen in vapor-phase selective oxidation of isobutene, butadiene and furan over various bismuth catalysts. J. Chem. Soc. Faraday Trans. 75, 1757–1768.Google Scholar

  • 3. Benyahial, F., Mearns, A.M., 1990. Selective oxidation of isobutene over bismuth molybdate catalyst. Appl. Catal. 66, 383–393.Google Scholar

  • 4. Capua, A.D., Dubois, J.-L., Fournier, M., 2007. Fine analysis of by-products of the selective oxidation of isobutene into methacrolein and methacrylic acid over Mo–V–P catalyst. J. Mol. Catal. A: Chem. 263, 62–69.Google Scholar

  • 5. Dai, H.X., Ng, C.F., Au, C.T., 2000. Perovskite-type halo-oxide La1−xSrxFeO3−δXσ (X=F, Cl) catalysts selective for the oxidation of ethane to ethane. J. Catal. 189, 52–62.Google Scholar

  • 6. Guan, J.Q., Wu, S.J., Wang, H.S., et al. 2007. Synthesis and characterization of MoVTeCeO catalysts and their catalytic performance for selective oxidation of isobutane and isobutylene. J. Catal. 251, 354–362.Web of ScienceGoogle Scholar

  • 7. He, H., Dai, H.X., Au, C.T., 2004. Defective structure, oxygen mobility, oxygen storage capacity, and redox properties of RE-based (RE=Ce, Pr) solid solutions. Catal. Today 90, 245–254.Google Scholar

  • 8. He, D.-H., Ueda, W., Moro-Oka, Y., 1992. Promotion effect of molybdate support on Bi2Mo3O12 catalyst in the selective oxidation of propylene. Catal. Lett. 12, 35–44.Google Scholar

  • 9. He, D.Y., Wu, J.L., Zhong, B.K., 2000. Oxidation of isobutene catalyzed by heteropoly compounds. J. Nat. Gas Chem. 9, 217–222.Google Scholar

  • 10. Jung, J.C., Lee, H., Kim, H., Song, I.K., et al. 2008. Effect of pH in the preparation of Ni9Fe3Bi1Mo12O51 for oxidative dehydrogenation of n-butene to 1,3-butadiene: Correlation between catalytic performance and oxygen mobility of Ni9Fe3Bi1-Mo12O51. Catal. Commun. 9, 943–949.Web of ScienceGoogle Scholar

  • 11. Jung, J.C., Lee, H., Song, I.K., et al. 2009. Oxidative dehydrogenation of n-butene to 1,3-butadiene over multicomponent bismuth molybdate (MII9Fe3Bi1Mo12O51) catalysts: Effect of divalent metal (MII). Catal. Today 141, 325–329.Web of ScienceGoogle Scholar

  • 12. Krenzke, L.D., Keulks, G.W., 1980. The catalytic oxidation of propylene VI: mechanistic studies utilizing isotopic tracers. J. Catal. 61, 316–325.Google Scholar

  • 13. Lai, Q.P., Yi, X.D., Hua, W.Q., Weng, W.Z., Wan, H.L., 2012. Promotion effect of Mn on the Mo-Bi-Fe-Co-Cs-K composite oxide catalysts for selective oxidation of isobutene to methacrolein. J. Mol. Catal. (China) 26, 10.Google Scholar

  • 14. Moro-oka, Y., Ueda, W., 1994. Multicomponent bismuth molybdate catalyst: A highly functionalized catalyst system for the selective oxidation of olefin. Adv. Catal. 40, 233–273.Google Scholar

  • 15. Park, J.H., Nohb, H., Park, J.W., Row, K., Jung, K.D., Shin, C.H., 2012. Effects of iron content on bismuth molybdate for the oxidative dehydrogenation of n-butenes to 1,3-butadiene. Appl. Catal. A Gen. 431–443, 137–143.Web of ScienceGoogle Scholar

  • 16. Ponceblanc, H., Millet, J.M.M., Coudurier, G., et al. 1993. Study of multiphasic molybdate-based catalysts: II. Synergy effect between bismuth molybdates and mixed iron and cobalt molybdates in mild oxidation of propene. J. Catal. 142, 381–391.Google Scholar

  • 17. Porteal, M.F., 2001. Effects of site isolation on n-butenes catalytic oxidation and isomerization over bismuth molybdates. Topics Catal. 15, 241–245.Google Scholar

  • 18. Ruckenstein, E., Krishnan R., Rai, K.N., 1976. Oxygen depletion of oxide catalysts. J. Catal. 45, 270–273.Google Scholar

  • 19. Sant, B.R., Rao, S.B., Rao, J.R., et al. 1984. Preparation, characterization and catalytic behaviour of bismuth molybdate catalysts. J. Sci. Ind. Res. 43, 542–569.Google Scholar

  • 20. Shashkin, D.P., Udalova, O.V., Shibanova, M.D., Krylov O.V., 2005. The mechanism of action of a multicomponent Co–Mo–Bi–Fe–Sb–K–O catalyst for the partial oxidation of propylene to acrolein: II. Changes in the phase composition of the catalyst under reaction conditions. Kinet. Catal. 46, 545–549.Google Scholar

  • 21. Soares, A.P.V., Dimitrov, L.D., Grasselli, R.K., et al. 2003. Synergy effects between β and γ phases of bismuth molybdates in the selective catalytic oxidation of 1-butene. Appl. Catal. A253, 191–200.Google Scholar

  • 22. Uchida, K., Ayame, A., 1996. Dynamic XPS measurements on bismuth molybdate surfaces. Surf. Sci. 357–358, 170–175.Google Scholar

  • 23. Xu, D., Liu, S.Y., Liu, Y.L., Wang, Z.L., 2012. Effect of pH value on the properties of molybdenum-based multiphasic oxide catalysts in selective oxidation of isobutene to methacrolein. Wuli Huaxue Xuebao/Acta Physico -Chimica Sinica 28, 2690.Web of ScienceGoogle Scholar

  • 24. Wang, L., Li, Z.X., Zhang, S.J., et al. 2007. Research progress in selective oxidation of isobutylene to methacrolein on complex oxide catalyst. Chin. J. Process Eng 7, 202–208.Google Scholar

  • 25. Wragg, R.D., Ashmore, P.G., Hockey, J.A., 1971. Selective oxidation of propene over bismuth molybdate catalysts: the oxidation of propene using 18O labeled oxygen and catalyst. J. Catal. 22, 49–53.Google Scholar

  • 26. Wolfs, M.W.J., Batist, Ph.A., 1974. The selective oxidation of 1-butene over a multicomponent molybdate catalyst. Influences of various elements on structure and activity. J. Catal. 32, 25–36.Google Scholar

About the article

Published Online: 2015-10-01

Published in Print: 2016-02-01

Funding: This research was financially supported by the NSFC (21276130), NSF of Shandong Province (ZR2014BP009).

Citation Information: International Journal of Chemical Reactor Engineering, Volume 14, Issue 1, Pages 105–112, ISSN (Online) 1542-6580, ISSN (Print) 2194-5748, DOI: https://doi.org/10.1515/ijcre-2015-0036.

Export Citation

©2016 by De Gruyter.Get Permission

Comments (0)

Please log in or register to comment.
Log in