Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao

12 Issues per year


IMPACT FACTOR 2017: 0.881
5-year IMPACT FACTOR: 0.908

CiteScore 2017: 0.86

SCImago Journal Rank (SJR) 2017: 0.306
Source Normalized Impact per Paper (SNIP) 2017: 0.503

Online
ISSN
1542-6580
See all formats and pricing
More options …
Volume 14, Issue 1

Novel Membrane Reactor Concepts for Hydrogen Production from Hydrocarbons: A Review

Ningning LuORCID iD: http://orcid.org/0000-0001-5892-6701 / Donglai XieORCID iD: http://orcid.org/0000-0002-9563-8327
Published Online: 2015-12-22 | DOI: https://doi.org/10.1515/ijcre-2015-0050

Abstract

Membrane reactors are attracting increasing attention for ultrapure hydrogen production from fossil fuel, integrating catalytic reaction and separation processes into one single unit thus can realize the removal of hydrogen or introduction of reactant in situ, which removes the thermodynamic bottleneck and improves hydrogen yield and selectivity. In this review, the state-of-the-art concepts for hydrogen production through membrane reactors are introduced, mainly including fixed bed membrane reactors, fluidized bed membrane reactors, and micro-channel membrane reactors, referring higher hydrocarbons as feedstock, such as ethanol, propane, or heptane; novel heating methods, like solar energy realized through molten salt; new modular designs, including panel and tubular configurations; ultra-compact micro-channel designs; carbon dioxide capture with chemical looping; multifuel processors for liquid and/or solid hydrocarbons; etc. Recent developments and commercialization hurdles for each type of membrane reactor are summarized. Modeling the reactor is fundamental to explore complex hydrodynamics in reactor systems, meaningful to investigate the effects of some important operating factors on reactor performances. Researches for reactor modeling are also discussed. Reaction kinetics for hydrocarbons reforming and reactor hydrodynamics are summarized respectively. Cold model is introduced to investigate physical phenomena in reactors.

Keywords: membrane reactor; hydrocarbon reforming; hydrogen production; reactor modeling

References

  • 1. Abashar, M.E.E., 2004. Coupling of Steam and Dry Reforming of Methane in Catalytic Fluidized Bed Membrane Reactors. Int. J. Hydrogen Energy 29, 799–808.Google Scholar

  • 2. Abashar, M.E.E., Alhumaizi, K.I., Adris, A.M., 2003. Investigation of Methane-Steam Reforming in Fluidized Bed Membrane Reactors. Ind. Eng. Chem. Res. 12, 2736–2745.Google Scholar

  • 3. Abba, I.A., Grace, J.R., Bi, H.T., 2003. Application of the Generic Fluidized-Bed Reactor Model to the Fluidized-Bed Membrane Reactor Process for Steam Methane Reforming with Oxygen Input. Ind. Eng. Chem. Res. 42, 2736–2745.Google Scholar

  • 4. Adris, A.M., Lim, C.J., Grace, J.R., 1994. The Fluidized Bed Membrane Reactor FBMR System: A Pilot Scale Experimental Study. Chem. Eng. Sci. 49, 5833–5843.Google Scholar

  • 5. Adris, A.M., Lim, C.J., Grace, J.R., 1997. The Fluidized-Bed Membrane Reactor for Steam Methane Reforming: Model Verification and Parametric Study. Chem. Eng. Sci. 52, 1609–1622.Google Scholar

  • 6. Adris, A.M., Pruden, B.B., Lim, C.J., Grace, J.R., 1996. On the Reported Attempts to Radically Improve the Performance of the Steam Methane Reforming Reactor. Canadian J. Chem. Eng. 74, 177–186.Google Scholar

  • 7. Ahn, S.H., Choi, I., Kwon, O.J., Kim, J.J., 2014. Hydrogen Production Through the Fuel Processing of Liquefied Natural Gas with Silicon-Based Micro-Reactors. Chem. Eng. J. 247, 9–15.Google Scholar

  • 8. Avci, A.K., Trimm, D.L., Önsan, Z. ì., 2001. Heterogeneous Reactor Modelling for Simulation of Catalytic Oxidation and Steam Reforming of Methane. Chem. Eng. Sci. 56, 641–649.Google Scholar

  • 9. Basile, A., Paturzo, L., Gallucci, F., 2003. Co-Current and Counter-Current Modes for Water Gas Shift Membrane Reactor. Catal. Today 82, 275–281.Google Scholar

  • 10. Bayat, M., Rahimpour, M.R., 2013. Production of Hydrogen and Methanol Enhancement Via a Novel Optimized Thermally Coupled Two-Membrane Reactor. Int. J. Energy Research 37, 105–120.Google Scholar

  • 11. Benguerba, Y., Dumas, C., Ernst, B., 2014. Modelling of the Membrane Permeability Effect on the H2 Production Using CFD Method. Int. J. Chem. React. Eng. 12, 333–344.Google Scholar

  • 12. Bineli, A., Thibault, J., Jardini, A., Maciel Filho, R., 2013. Ethanol Steam Reforming for Hydrogen Production in Microchannel Reactors: Experimental Design and Optimization. Int. J. Chem. React. Eng. 11, 9–17.Google Scholar

  • 13. Boeltken, T., Wunsch, A., Gietzelt, T., Pfeifer, P., Dittmeyer, R., 2014. Ultra-Compact Microstructured Methane Steam Reformer with Integrated Palladium Membrane for On-Site Production of Pure Hydrogen: Experimental Demonstration. Int. J. Hydrogen Energy 39, 18058–18068.Google Scholar

  • 14. Boyd, D.T., Grace, J.R., Lim, C.J., 2005. Hydrogen from an Internally Circulating Fluidized Bed Membrane Reactor. Int. J. Chem. React. Eng. 3, A58.Google Scholar

  • 15. Boyd, D.T., Lim, C.J., Grace, J.R., Adris, A.M., 2007. Cold Modelling of an Internally Circulating Fluidized Bed Membrane Reactor. Int. J. Chem. React. Eng. 5, A26.Google Scholar

  • 16. Chen, Z., Elnashaie, S.S.E.H., 2004. Bifurcation Behavior and Efficient Pure Hydrogen Production for Fuel Cells Using a Novel Autothermic Membrane Circulating Fluidized-Bed CFB. reformer: Sequential debottlenecking and the contribution of John Grace. Ind. Eng. Chem. Res. 43, 5449–5459.Google Scholar

  • 17. Chen, Z., Elnashaie, S.S.E.H., 2005. Bifurcation and Its Implications for a Novel Autothermal Circulating Fluidized Bed Membrane Reformer for the Efficient Pure Hydrogen Production. Chem. Eng. Sci. 60, 428–4309.Google Scholar

  • 18. Chen, Z., Elnashaie, S.S.E.H., 2005a. Optimization of Reforming Parameter and Configuration for Hydrogen Production. AIChE J. 51, 1467–1481.Google Scholar

  • 19. Chen, Z., Elnashaie, S.S.E.H., 2005b. Economics of the Clean Fuel Hydrogen in a Novel Autothermal Reforming Process. Ind. Eng. Chem. Res. 44, 4834–4840.Google Scholar

  • 20. Chen, Z., Grace, J.R., Lim, C.J., Li, A., 2007. Experimental Studies of Pure Hydrogen Production in a Commercialized Fluidized-Bed Membrane Reactor with SMR and ATR Catalysts. Int. J. Hydrogen Energy 32, 2359–2366.Google Scholar

  • 21. Chen, Z., Po, F., Grace, J.R., Lim, C.J., Elnashaie, S.S.E.H., Mahecha-Botero, A., Rakib, M., Shirasaki, Y., Yasuda, I., 2008. Sorbent-Enhanced/Membrane-Assisted Steam-Methane Reforming. Chem. Eng. Sci. 63, 170–182.Google Scholar

  • 22. Chen, Z., Yan, Y., Elnashaie, S.S.E.H., 2003. Novel Circulating Fast Fluidized-Bed Membrane Reformer for Efficient Production of Hydrogen from Steam Reforming of Methane. Chem. Eng. Sci. 58, 4335–4349.Google Scholar

  • 23. Coronel, L., Múnera, J.F., Lombardo, E.A., Cornaglia, L.M., 2011. Pd Based Membrane Reactor for Ultrapure Hydrogen Production Through the Dry Reforming of Methane. Experimental and Modeling Studies. Applied Catal. A: General 400, 185–194.Google Scholar

  • 24. Cui, H., Mostoufi, N., Chaouki, J., 2000. Characterization of Dynamic Gas-Solid Distribution in the Fluidized Beds. Chem. Eng. J. 79, 135–143.Google Scholar

  • 25. D‘Angelo, M., Ordomsky, V., Paunovic, V., van der Schaaf, J., Schouten, J.C., Nijhuis, T.A., 2013. Hydrogen Production Through Aqueous-Phase Reforming of Ethylene Glycol in a Washcoated Microchannel. Chem. Sus. Chem. 6, 1708–1716.Google Scholar

  • 26. Dang, N.T., Gallucci, F., van Sint Annaland, M., 2014. Micro-Structured Fluidized Bed Membrane Reactors: Solids Circulation and Densified Zones Distribution. Chem. Eng. J. 239, 42–52.Google Scholar

  • 27. Dehkordi, A.M., Memari, M., 2009. Compartment Model for Steam Reforming of Methane in a Membrane Assisted Bubbling Fluidized Bed Reactor. Int. J. Hydrogen Energy 34, 1275–1291.Google Scholar

  • 28. Dehkordi, A.M., Savari, C., Ghasemi, M., 2011. Steam Reforming of Methane in a Tapered Membrane-Assisted Fluidized-Bed Reactor: Modeling and Simulation. International Int. J. Hydrogen Energy 36, 490–504.Google Scholar

  • 29. Deshmukh, S., Heinrich, S., Mörl, L., van Sint Annaland, M., Kuipers, J., 2007. Membrane Assisted Fluidized Bed Reactors: Potentials and Hurdles. Chem. Eng. Sci. 62, 416–436.Google Scholar

  • 30. Deshmukh, S.A.R.K., van Sint Annaland, M., Kuipers, J.A.M., 2007. Gas Back-Mixing Studies in Membrane Assisted Bubbling Fluidized Beds. Chem. Eng. Sci. 62, 4095–4111.Google Scholar

  • 31. Dogan, M., Posarac, D., Grace, J.R., Adris, A.M., Lim, C.J., 2002. Modeling of Autothermal Steam Methane Reforming in a Fluidized Bed Membrane Reactor. Int. J. Chem. React. Eng. 1, A2.Google Scholar

  • 32. Du, X., Shen, Y., Yang, L., Shi, Y., Yang, Y., 2012. Experiments on Hydrogen Production from Methanol Steam Reforming in the Microchannel Reactor. Int. J. Hydrogen Energy 37, 12271–12280.Google Scholar

  • 33. Edlund, D.J., Pledger, W.A., Studebaker, R.T., 2003. Hydrogen Purification Membranes, Components and Fuel Processing Systems Containing the Same. U.S. Patent, 6537352 B2.Google Scholar

  • 34. Falco, M.D., Nardella, P., Marrelli, L., Paola, L.D., Basile, A., Galucci, F., 2008. The Effect of Heat-Flux Profile and of Other Geometric and Operating Variables in Designing Industrial Membrane Methane Steam Reformers. Chem. Eng. J. 138, 442–451.Google Scholar

  • 35. Ferreira Aparicio, P., Benito, M.J., Sanz, J.L., 2005. New Trends in Reforming Technologies: From Hydrogen Industrial Plants to Multifuel Microreformers. Catal. Rev. 47, 491–588.Google Scholar

  • 36. Fryer, C., Potter, O.E., 1972. Countercurrent Backmixing Model for Fluidized Bed Catalytic Reactors: Applicability of Simplified Solutions. Ind. Eng. Chem. Res. 11, 338–344.Google Scholar

  • 37. Gallucci, F., Fernandez, E., Corengia, P., van Sint Annaland, M., 2013. Recent Advances on Membranes and Membrane Reactors for Hydrogen Production. Chem. Eng. Sci. 92, 40–66.Google Scholar

  • 38. Gallucci, F., Van Sint Annaland, M., Kuipers, J.A.M., 2008. Autothermal Reforming of Methane with Integrated CO2 Capture in a Novel Fluidized Bed Membrane Reactor. Part 1: Experimental Demonstration. Top. Catal. 51, 133–145.Google Scholar

  • 39. Giaconia, A., Turchetti, L., Monteleone, G., Morico, B., Iaquaniello, G., Shabtai, K., Sheintuch, M., Boettge, D., Adler, J., Palma, V., Voutetakis, S., Lemonidou, A., Annesini, M.C., den Exter, M., Balzer, H., 2013. Development of a Solar-Powered, Fuel-Flexible Compact Steam Reformer: The Comethy Project. Chem. Eng. Trans. 35, 433–438.Google Scholar

  • 40. Grace, J.R., 1984. Generalized Models for Isothermal Fluidized Bed Reactors, in: Doraiswamy, L.K. (Ed.), Recent Advances in the Engineering Analysis of Chemically Reacting System, Wiley: Eastern: New Delhi, India, pp. 237–255.Google Scholar

  • 41. Grace, J.R., Elnashaie, S.S.E.H., Lim, C.J., 2005. Hydrogen Production in Fluidized Beds with In Situ Membranes. Int. J. Chem. React. Eng. 3, A41.Google Scholar

  • 42. Grace, J.R., Li, X.T., Lim, C.J. 2001. Equilibrium Modelling of Catalytic Steam Reforming of Methane in Membrane Reactors with Oxygen Addition. Catal. Today 64, 141–149.Google Scholar

  • 43. Grace, J.R., Lim, C.J., Adris, A.M., Xie, D., Boyd, D.A., Wolfs, W.M., Brereton, C.M.H., 2006. Internally Circulating Fluidized Bed Membrane Reactor System. U.S. Patent, 7141231 B2.Google Scholar

  • 44. Hou, T., Zhang, S., Xu, T., Cai, W., 2014. Hydrogen Production from Oxidative Steam Reforming of Ethanol Over Ir/CeO2 Catalysts in a Micro-Channel Reactor. Chem. Eng. J. 255, 149–155.Google Scholar

  • 45. Huang, K., 2013.Membranes and Reactors for CO2 Separation. U.S. Patent, 8506677 B2.Google Scholar

  • 46. Hwang, K., Lee, C., Lee, S., Ryi, S., Park, J., 2011. Novel Micro-Channel Methane Reformer Assisted Combustion Reaction for Hydrogen Production. Int. J. Hydrogen Energy 36, 473–481.Google Scholar

  • 47. Hwang, K., Ryi, S., Lee, C., Lee, S., Park, J., 2011. Simplified, Plate-Type Pd Membrane Module for Hydrogen Purification. Int. J. Hydrogen Energy 36, 10136–10140.Google Scholar

  • 48. Hwang, K.R., Lee, S.W., Lee, D.W., Lee, C.B., Ji, S.M., Park, J.S., 2014. Bi-Functional Hydrogen Membrane for Simultaneous Chemical Reaction and Hydrogen Separation. Int. J. Hydrogen Energy 39, 2614–2620.Google Scholar

  • 49. Iulianelli, A., Ribeirinha, P., Mendes, A., Basile, A., 2014. Methanol Steam Reforming for Hydrogen Generation via Conventional and Membrane Reactors: A Review. Renewable and Sustainable Energy Rev. 29, 355–368.Google Scholar

  • 50. Jakobsen, J.P., Halmøy, E., 2009. Reactor Modeling of Sorption Enhanced Steam Methane Reforming. Energy Procedia 1, 725–732.Google Scholar

  • 51. Jin, W., Gu, X., Li, S., Huang, P., Xu, N., Shi, J., 2000. Experimental and Simulation Study on a Catalyst Packed Tubular Dense Membrane Reactor for Partial Oxidation of Methane to Syngas. Chem. Eng. Sci. 55, 2617–2625.Google Scholar

  • 52. Jong, J.F., van Sint Annaland, M., Kuipers, J.A.M., 2011. Experimental Study on the Effects of Gas Permeation through Flat Membranes on the Hydrodynamics in Membrane-Assisted Fluidized Beds. Chem. Eng. Sci. 66, 2398–2408.Google Scholar

  • 53. Karnik, S.V., Hatalis, M.K., Kothare, M.V., 2003. Towards a Palladium Micro-Membrane for the Water Gas Shift Reaction: Microfabrication Approach and Hydrogen Purification Results. Microelectromech. Syst. 12, 93–100.Google Scholar

  • 54. Kato, K., Wen, C. Y., 1969. Bubble Assemblage Model for Fluidized Bed Catalytic Reactors. Chem. Eng. Sci. 24, 1351–1369.Google Scholar

  • 55. Khademi, M.H., Jahanmiri, A., Rahimpour, M.R., 2009. A Novel Configuration for Hydrogen Production from Coupling of Methanol and Benzene Synthesis in a Hydrogen Permselective Membrane Reactor. Int. J. Hydrogen Energy 34, 5091–5107.Google Scholar

  • 56. Kudo, S., Maki, T., Kitao, N., Mae, K., 2009. Efficient Hydrogen Production from Methanol by Combining Micro Channel with Carbon Membrane Catalyst Loaded with Cu/Zn. J. Chem. Eng. Japan 42, 680–686.Google Scholar

  • 57. Kuipers, J.A.M., Patil, C.S., van Sint Annaland, M., 2006. Process and Reactor for the Production of Hydrogen and Carbon Dioxide. U.S. Patent, 0013762 A1.Google Scholar

  • 58. Kumar, S., Katiyar, N., Kumar, S., Yadav, S., 2013. Exergy Analysis of Oxidative Steam Reforming of Methanol for Hydrogen Producton: Modeling Study. Int. J. Chem. React. Eng. 11, 489–500.Google Scholar

  • 59. Kunii, D., Levenspiel, O. Fluidization Engineering. Wiley: New York, 2nd ed., Butterworth-Heinemann, 1991, pp 156–163.Google Scholar

  • 60. Kurokawa, H., Shirasaki, Y., Yasuda, I., 2011. Energy-Efficient Distributed Carbon Capture in Hydrogen Production from Natural Gas. Energy Procedia 4, 674–680.Google Scholar

  • 61. Lee, S.H., Baek, I.H., Eom, W.H., Kim, J.N., 2014. Fluidized Bed Water Gas Shift Membrane for Simultaneous CO2 Separation and CO2 Separation Method Using the Same. U.S. Patent, 8663566 B2.Google Scholar

  • 62. Mahecha-Botero, A., Boyd, T., Gulamhusein, A., Comyn, N., Lim, C.J., Grace, J.R., Shirasaki, Y., Yasuda, I., 2008. Pure Hydrogen Generation in a Fluidized-Bed Membrane Reactor: Experimental Findings. Chem. Eng. Sci. 63, 2752–2762.Google Scholar

  • 63. Mahecha-Botero, A., Chen, Z., Grace, J.R., Elnashaie, S., Lim, C.J., Rakib, M., Yasuda, I., Shirasaki, Y., 2009. Comparison of Fluidized Bed Flow Regimes for Steam Methane Reforming in Membrane Reactors: A Simulation Study. Chem. Eng. Sci. 64, 3598–3613.Google Scholar

  • 64. Mahecha-Botero, A., Grace, J.R., Elnashaie, S S.E.H., Lim, C.J., 2009. Advances in Modeling of Fluidized-Bed Catalytic Reactors: A Comprehensive Review. Chem. Eng. Commun. 196, 1375–1405.Google Scholar

  • 65. Mahecha-Botero, A., Grace, J.R., Lim, C.J., Elnashaie, S.S.E.H., Boyd, T., Gulamhusein, A., 2009. Pure hydrogen Generation in a Fluidized Bed Membrane Reactor: Application of the Generalized Comprehensive Reactor Model. Chem. Eng. Sci. 64, 3826–3846.Google Scholar

  • 66. Martínez, I., Romano, M.C., Chiesa, P., Grasa, G., Murillo, R., 2013. Hydrogen Production Through Sorption Enhanced Steam Reforming of Natural Gas: Thermodynamic Plant Assessment. Int. J. Hydrogen Energy 38, 15180–15199.Google Scholar

  • 67. Mears, D.E., 1971. Tests for Transport Limitations in Experimental Catalytic Reactors. Ind. Eng. Chem. Proc. Des. Dev. 10, 541–547.Google Scholar

  • 68. Medrano, J.A., Spallina, V., van Sint Annaland, M., Gallucci, F., 2014. Thermodynamic Analysis of a Membrane-Assisted Chemical Looping Reforming Reactor Concept for Combined H2 Production and CO2 Capture. Int. J. Hydrogen Energy 39, 4725–4738.Google Scholar

  • 69. Mejdell, A.L., Peters, T.A., Stange, M., Venvik, H.J., Bredesen, R., 2009. Performance and Application of Thin Pd-Alloy Hydrogen Separation Membranes in Different Configurations. J. Taiwan Inst. Chem. Eng. 40, 253–259.Google Scholar

  • 70. Oyama, S.T., Hacarlioglu, P., 2009. The Boundary Between Simple and Complex Descriptions of Membrane Reactors: The Transition Between 1-D and 2-D Analysis. J. Membr. Sci. 337, 188–199.Google Scholar

  • 71. Park, G., Yim, S., Yoon, Y., Lee, W., Kim, C., Seo, D., Eguchi, K., 2005. Hydrogen Production with Integrated Microchannel Fuel Processor for Portable Fuel Cell Systems. J. Power Sources 145, 702–706.Google Scholar

  • 72. Patil, C.S., van Sint Annaland, M., Kuipers, J.A.M., 2005. Design of a novel Autothermal Membrane-Assisted Fluidized-Bed Reactor for the Production of Ultrapure Hydrogen from Methane. Ind. Eng. Chem. Res. 44, 9502–9512.Google Scholar

  • 73. Patil, C.S., van Sint Annaland, M., Kuipers, J.A.M., 2007. Fluidised Bed Membrane Reactor for Ultrapure Hydrogen Production Via Methane Steam Reforming: Experimental Demonstration and Model Validation. Chem. Eng. Sci. 62, 2989–3007.Google Scholar

  • 74. Patrascu, M., Sheintuch, M., 2015. On-Site Pure Hydrogen Production by Methane Steam Reforming in High Flux Membrane Reactor: Experimental Validation, Model Predictions and Membrane Inhibition. Chem. Eng. J. 262, 862–874.Google Scholar

  • 75. Pham, T.V., Katikaneni, S.P., Beltramini, J.N., Adebajo, M.O., Da Costa, J.C.D., Lu, G.Q., 2013. Metal supported silica based catalytic membrane reactor assembly. U.S. Patent, 8597383 B2.Google Scholar

  • 76. Prasad, P., Elnashaie, S.S.E.H., 2002. Novel Circulating Fluidized-Bed Membrane Reformer for the Efficient Production of Ultraclean Fuels from Hydrocarbons. Ind. Eng. Chem. Res. 41, 6518–6527.Google Scholar

  • 77. Prasad, P., Elnashaie, S.S.E.H., 2003. Coupled Steam and Oxidative Reforming for Hydrogen Production in a Novel Membrane Circulating Fluidized-Bed Reformer. Ind. Eng. Chem. Res. 42, 4715–4722.Google Scholar

  • 78. Prasad, P., Elnashaie, S.S.E.H., 2004. Novel Circulating Fluidized-Bed Membrane Reformer Using Carbon Dioxide Sequestration. Ind. Eng. Chem. Res. 43, 494–501.Google Scholar

  • 79. Rahimpour, M.R., Rahmani, F., Bayat, M., Pourazadi, E., 2011. Enhancement of Simultaneous Hydrogen Production and Methanol Synthesis in Thermally Coupled Double Membrane Reactor. Int. J. Hydrogen Energy 36, 284–298.Google Scholar

  • 80. Rakib, M.A., Grace, J.R., Lim, C.J., Elnashaie, S.S.E.H., 2011. Modeling of a Fluidized Bed Membrane Reactor for Hydrogen Production by Steam Reforming of Hydrocarbons. Ind. Eng. Chem. Res. 50, 3110–3129.Google Scholar

  • 81. Rakib, M.A., Grace, J.R., Lim, C.J., Elnashaie, S.S.E.H., Ghiasi, B., 2010. Steam Reforming of Propane in a Fluidized Bed Membrane Reactor for Hydrogen Production. Int. J. Hydrogen Energy 35, 6276–6290.Google Scholar

  • 82. Rakib, M.A., Grace, J.R., Lim, C.J., Elnashaie, S.S.S.H., 2010. Steam Reforming of Heptane in a Fluidized Bed Membrane Reactor. J. Power Sources 195, 5749–5760.Google Scholar

  • 83. Reitz, T.L., Ahmed, S., Krumpelt, M., Kumar, R., Kung, H.H., 2000. Characterization of CuO/ZnO Under Oxidizing Conditions for the Oxidative Methanol Reforming Reaction. J. Mol. Catal. A: Chem. 162, 275–285.Google Scholar

  • 84. Roy, S., Pruden, B.B., Adris, A.M., Grace, J.R., Lim, C.J., 1999. Fluidized-Bed Steam Methane Reforming with Oxygen Input. Chem. Eng. Sci. 54, 2095–2102.Google Scholar

  • 85. Rydén, M., Lyngfelt, A., 2006. Using Steam Reforming to Produce Hydrogen with Carbon Dioxide Capture by Chemical-Looping Combustion. Int. J. Hydrogen Energy 31, 1271–1283.Google Scholar

  • 86. Rydén, M., Lyngfelt, A., Schulman, A., de Diego, L., Adánez, J., Ortiz, M., 2008. Developing Chemical-Looping Steam Reforming and Chemical-Looping Autothermal Reforming, in: Thomas, D.C., Bensen, S.M. (Eds.), Carbon Dioxide Capture for Storage in Deep Geological Formations, vol. 3, CPL Press, Berks.Google Scholar

  • 87. Sarvar-Amini, A., Sotudeh-Gharebagh, R., Bashiri, H., Mostoufi, N., Haghtalab, A., 2007. Sequential Simulation of a Fluidized Bed Membrane Reactor for the Steam Methane Reforming Using Aspen Plus. Energy Fuel 21, 3593–3598.Google Scholar

  • 88. Seris, E., Abramowitz, G., Johnston, A.M., Haynes, B.S., 2008. Scaleable, Microstructured Plant for Steam Reforming of Methane. Chemical Engineering J. 135, S9–S16.Google Scholar

  • 89. Shahkarami, P., Fatemi, S., 2015. Mathematical Modeling and Optimization of Combined Steam and Dry Reforming of Methane Process in Catalytic Fluidized Bed Membrane Reactor. Chem. Eng. Communications 202, 774–786.Google Scholar

  • 90. Shirasaki, Y., Tsuneki, T., Ohta, Y., Yasuda, I., Tachibana, S., Nakajima, H., Kobayashi, K., 2009. Development of Membrane Reformer System for Highly Efficient Hydrogen Production from Natural Gas. Int. J. Hydrogen Energy 34, 4482–4487.Google Scholar

  • 91. Sieverts, A., Zapf, G., 1935. The Solubility of Deuterium and Hydrogen in Solid Palladium. J. Phys. Chem. 174, 359–364.Google Scholar

  • 92. Silva, J.D., 2014. Dynamic Simulation of the Steam Reforming of Methane for the Production of Hydrogen in a Catalytic Fixed Bed Membrane Reactor. Chem. Eng. Transactions 39, 961–966.Google Scholar

  • 93. Singh, A.P., Singh, S., Ganguly, S., Patwardhan, A.V., 2014. Steam Reforming of Methane and Methanol in Simulated Macro & Micro-Scale Membrane Reactors: Selective Separation of Hydrogen for Optimum Conversion. Journal of Natural Gas Science and Engineering 18, 286–295.Google Scholar

  • 94. Snoeck, J.-W., Froment, G.F., Fowles, M., 1997. Kinetic Study of the Carbon Filament Formation by Methane Cracking on a Nickel Catalyst. J. Catal. 169, 250–262.Google Scholar

  • 95. Solsvik, J., Chao, Z., Sánchez, R.A., Jakobsen, H.A., 2014. Numerical Investigation of Steam Methane Reforming with CO2-Capture in Bubbling Fluidized Bed Reactors. Fuel Process. Technol. 125, 290–300.Google Scholar

  • 96. Tan, X., Li, K., 2013. Membrane Microreactors for Catalytic Reactions. J. Chem. Technol. Biotechnol. 88, 1771–1779.Google Scholar

  • 97. Tonkovich, A.L.Y., Yang, B., Perry, S. T., Fitzgerald, S. P., Wang, Y., 2007. From Seconds to Milliseconds to Microseconds Through Tailored Microchannel Reactor Design of a Steam Methane reformer. Catalysis Today 120, 21–29.Google Scholar

  • 98. Tøttrup, P.B., 1976. Kinetics of decomposition of carbon monoxide on a supported nickel catalyst. J. Catal. 42, 29–36.Google Scholar

  • 99. Tsai, C.Y., Dixon, A.G., Moser, W.R., Ma, Y.H., 1997. Dense Perovskite Membrane Reactors for Partial Oxidation of Methane to Syngas. AIChE J. 43, 2741–2750.Google Scholar

  • 100. Tuinier, M.J., van Sint Annaland, M., Kramer, G.J., Kuipers, J., 2010. Cryogenic CO2 Capture Using Dynamically Operated Packed Beds. Chem. Eng. Sci. 65, 114–119.Google Scholar

  • 101. Tzanetis, K.F., Martavaltzi, C.S., Lemonidou, A.A., 2012. Comparative Exergy Analysis of Sorption Enhanced and Conventional Methane Steam Reforming. Int. J. Hydrogen Energy 37, 16308–16320.Google Scholar

  • 102. Vigneault, A., Elnashaie, S.S.E.H., Grace, J.R., 2012. Simulation of a Compact Multichannel Membrane Reactor for the Production of Pure Hydrogen via Steam Methane Reforming. Chem. Eng. Tec. 35, 1520–1533.Google Scholar

  • 103. Vigneault, A., Grace, J.R., 2015. Hydrogen Production in Multi-Channel Membrane Reactor via Steam Methane Reforming and Methane Catalytic Combustion. Int. J. Hydrogen Energy 40, 233–243.Google Scholar

  • 104. Wang, F., Qi, B., Wang, G., Li, L., 2013. Methane Steam Reforming: Kinetics and Modeling Over Coating Catalyst in Micro-Channel Reactor. Int. J. Hydrogen Energy 38, 5693–5704.Google Scholar

  • 105. Wang, J., Wang, Y., Jakobsen, H.A., 2014. The Modeling of Circulating Fluidized Bed Reactors for SE-SMR Process and Sorbent Regeneration. Chem. Eng. Sci. 108, 57–65.Google Scholar

  • 106. Wilhite, B.A., Weiss, S.E., Ying, J.Y., Schmidt, M.A., Jensen, K.F., 2006. High-Purity Hydrogen Generation in a Microfabricated 23 wt% Ag-Pd Membrane Device Integrated with 8: 1 LaNi0.95Co0.05O3/Al2O3 catalyst. Adv. Mater. 18, 1701–1704.Google Scholar

  • 107. Xie, D., Adris, A.M., Lim, C.J., Grace, J.R., 2009. Test on a Two-Dimensional Fluidized Bed Membrane Reactor for Autothermal Steam Methane Reforming. Acta Energiae Solaris Sinica 30, 704–707.Google Scholar

  • 108. Xie, D., Grace, J.R., Lim, C.J., 2006. Development of Internally Circulating Fluidized Bed Membrane Reactor for Hydrogen Production from Natural Gas. Journal of Wuhan University of Technology 11, 252–257.Google Scholar

  • 109. Xie, D., Lim, C.J., Grace, J.R., Adris, A.M., 2009. Gas and Particle Circulation in an Internally Circulating Fluidized Bed Membrane Reactor Cold Model. Chem. Eng. Sci. 64, 2599–2606.Google Scholar

  • 110. Xie, D., Qiao, W., Wang, Z., Wang, W., Yu, H., Peng, F., 2010. Reaction/Separation Coupled Equilibrium Modeling of Steam Methane Reforming in Fluidized Bed Membrane Reactors. Int. J. Hydrogen Energy 35, 11798–11809.Google Scholar

  • 111. Xu, J., Froment, G.F., 1989. Methane Steam Reforming, Methanation and Water-Gas Shift: I. Intrinsic Kinetics. AIChE J. 35, 88–96.Google Scholar

  • 112. Ye, G., Xie, D., Qiao, W., Grace, J.R., Lim, C.J., 2009. Modeling of Fluidized Bed Membrane Reactors for Hydrogen Production from Steam Methane Reforming with Aspen Plus. Int. J. Hydrogen Energy 34, 4755–762.Google Scholar

About the article

Published Online: 2015-12-22

Published in Print: 2016-02-01


Funding: Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant/Award Number: “20130172110011”); China Scholarship Council (Grant/Award Number: “201406150038”); Guangdong Scientific Development Program (Grant/Award Number: “2013B010405001”).


Citation Information: International Journal of Chemical Reactor Engineering, Volume 14, Issue 1, Pages 1–31, ISSN (Online) 1542-6580, ISSN (Print) 2194-5748, DOI: https://doi.org/10.1515/ijcre-2015-0050.

Export Citation

©2016 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Martin Cholewa, Robin Dürrschnabel, Nikolaos Boukis, and Peter Pfeifer
International Journal of Hydrogen Energy, 2018
[2]
Majid Taghizadeh and Fatemeh Aghili
Reviews in Chemical Engineering, 2018, Volume 0, Number 0
[3]
Martin Cholewa, Bastian Zehner, Heike Kreuder, and Peter Pfeifer
Chemical Engineering and Processing: Process Intensification, 2017
[4]
Wendelin Deibert, Mariya E. Ivanova, Stefan Baumann, Olivier Guillon, and Wilhelm A. Meulenberg
Journal of Membrane Science, 2017
[5]
E. Berkenwald, M. L. Laganá, J.M. Maffi, P. Acuña, G. Morales, and D. Estenoz
Polymer Engineering & Science, 2017
[6]
I. A. Stenina and A. B. Yaroslavtsev
Inorganic Materials, 2017, Volume 53, Number 3, Page 253

Comments (0)

Please log in or register to comment.
Log in