Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao

12 Issues per year


IMPACT FACTOR 2017: 0.881
5-year IMPACT FACTOR: 0.908

CiteScore 2017: 0.86

SCImago Journal Rank (SJR) 2017: 0.306
Source Normalized Impact per Paper (SNIP) 2017: 0.503

Online
ISSN
1542-6580
See all formats and pricing
More options …

Discussions on Particle Flux Measurement in Gas-Solids Risers

Yongmin Zhang
  • Corresponding author
  • State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, P. R. China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-02-02 | DOI: https://doi.org/10.1515/ijcre-2015-0162

Abstract

In gas-solids risers of fast fluidization regime, the gross particle flux determined by integrating the product of the measured average particle concentration and velocity is always found several times or even larger than that measured by direct experimental methods. Based on analysis of the measurement mechanisms and a simple model for two-phase flow structure in gas-solids risers, this big unidirectional deviation is first explained in depth in this study. It is concluded that the unique two-phase flow structure (i.e. the low-velocity dense phase and high-velocity dilute phase in a gas-solids riser) and the bad coupling quality of the measured transient particle concentration and velocity during data processing lead to this big unidirectional deviation. Finally, this explanation is extended to wider multiphase flow systems and advices are proposed in measuring phase fluxes.

Keywords: particle flux; riser; gas-solids; measurement; phase

References

  • 1. Bader, R., Findlay, J., Knowlton, T.M., 1988. Analysis of the local structure of the two phase flow in a fast fluidized bed, in: Basu, P., Large, J.F. (Eds.), Circulating Fluidized Bed Technology II. Pergamon Press, Toronto, Canada, pp. 123–137.Google Scholar

  • 2. Bai, D.R., Jin, Y., Yu, Z.Q., Zhu, J.X., 1992. The Axial Distribution of the Cross-Sectionally Averaged Voidage in Fast Fluidized Beds. Powder Technol. 71, 51–58.Google Scholar

  • 3. Bi, H.T., Zhou, J., Qin, S.Z., Grace, J.R., 1996. Annular Wall Layer Thickness in Circulating Fluidized Bed Risers. Can. J. Chem. Eng. 74, 811–814.Google Scholar

  • 4. Brereton, C.M.H., Grace, J.R., 1993. Microstructural Aspects of the Behaviour of Circulating Fluidized Beds. Chem. Eng. Sci. 48, 2565–2572.Google Scholar

  • 5. Cheng, L., Soo, S.L., 1970. Charging of Dust Particles by Impact. J. Appl. Phys. 41, 585–591.Google Scholar

  • 6. Fan, Y., 2000. The gas-solid two-phase flow in the FCC riser, Doctoral Dissertation, China University of Petroleum, Beijing, China. in Chinese)

  • 7. Hartge, E.U., Li, Y., Werther, J., 1986. Analysis of the local structure of the two phase flow in a fast fluidized bed, in: Basu, P. (Ed.), Circulating Fluidized Bed Technology. Pergamon Press, Toronto, Canada, pp. 153–160.Google Scholar

  • 8. Horio, M., 1997. Hydrodynamics, in: Grace, J.R., Avidan, A.A., Knowlton, T.M. (Eds.), Circulating Fluidized Beds. Chapman & Hall Press, London, pp. 21–85.Google Scholar

  • 9. Horio, M., Kobylecki, R.P., Tsukada, M., 2003. Instrumentation and measurements, in: Yang, W.C. (Ed.), Handbook of Fluidization and Fluid-Particle Systems. Marcel Dekker, Inc., New York.Google Scholar

  • 10. Horio, M., Morishita, K., Tachibana, O., Murata, N., 1988. Solid distribution and movement in circulating fluidized beds, in: Basu, P., Large, J.F. (Eds.), Circulating Fluidized Bed Technology II. Pergamon Press, Toronto, Canada, pp. 147–154.Google Scholar

  • 11. Issangya, A.S., Bai, D., Bi, H.T., Lim, J.C., Zhu, J., Grace, J.R., 1997. Axial solids holdup profiles in a high-density circulating fluidized bed riser, in: Kwauk, M. (Ed.), Circulating Fluidized Bed Technology V. Science Press, Beijing, China, pp. 60–65.Google Scholar

  • 12. Jiang, P., Cai, P., Fan, L.S., 1993. Transient flow behavior in fast fluidization, in: Avidan, A.A. (Ed.), Circulating Fluidized Bed Technology IV. AIChE, New York, pp. 111–117.Google Scholar

  • 13. Kirbas, G., Kim, S.W., Bi, X., Lim, C.J., Grace, J.R., 2007. Radial distribution of local concentration weighted particle velocities in high density circulating fluidized beds, in: Berruti, F., Bi, X., Puglsey, T. (Eds.), The 12th International Conference on Fluidization - New Horizons in Fluidization Engineering. Engineering Conferences International, Vancouver, Canada, pp. 71–78.Google Scholar

  • 14. Li, X., Yang, C., Yang, S., Li, G., 2012. Fiber-Optical Sensors: Basics and Applications in Multiphase Reactors. Sensors 12, 12519–12544.Web of ScienceGoogle Scholar

  • 15. Liu, J., Grace, J.R., Bi, X., 2003a. Novel Multifunctional Optical-Fiber Probe: II. High-Density CFB Measurements. AlChE J. 49, 1421–1432.Google Scholar

  • 16. Liu, J.Z., Grace, J.R., Bi, X.T., 2003b. Novel Multifunctional Optical-Fiber Probe: I. Development and Validation. AlChE J. 49, 1405–1420.Google Scholar

  • 17. Liu, M., Lu, C., Zhu, X., Xie, J., Shi, M., 2010. Bed Density and Circulation Mass Flowrate in a Novel Annulus-Lifted Gas–Solid Air Loop Reactor. Chem. Eng. Sci. 65, 5830–5840.Web of ScienceGoogle Scholar

  • 18. Louge, M., 1997. Experimental techniques, in: Grace, J.R., Avidan, A.A., Knowlton, T.M. (Eds.), Circulating Fluidized Beds. Chapman & Hall Press, London, pp. 312–368.Google Scholar

  • 19. Qian, G., Li, J., 1993. Particle-velocity measurement in CFB with an integrated probe, in: Avidan, A.A. (Ed.), Circulating Fluidized Bed Technology IV. AIChE, New York, pp. 274–278.Google Scholar

  • 20. Schnitzlein, M.G., Weinstein, H., 1988. Flow Characterization in High-Velocity Fluidized Beds Using Pressure Fluctuations. Chem. Eng. Sci. 43, 2605–2614.Google Scholar

  • 21. Wang, J., 2010. Flow Structures Inside a Large-Scale Turbulent Fluidized Bed of FCC Particles: Eulerian Simulation with an EMMS-based Sub-Grid Scale Model, Particuology 8, 176–185.Web of ScienceGoogle Scholar

  • 22. Wei, F., JIn, Y., Yu, Z., 1994. The visualization of macro structure of the gas-solids suspension in high density CFB, in: Avidan, A.A. (Ed.), Circulating Fluidized Bed Technology IV. AIChE, New York, pp. 588–593.Google Scholar

  • 23. Wei, F., Lin, H., Cheng, Y., Wang, Z., Jin, Y., 1998. Profiles of Particle Velocity and Solids Fraction in a High-Density Riser. Powder Technol. 100, 183–189.Google Scholar

  • 24. Wei, F., Yang, G.-Q., Jin, Y., Yu, Z.-Q., 1995. The Characteristics of Cluster in a High Density Circulating Fluidized Bed. Can. J. Chem. Eng. 73, 650–655.Google Scholar

  • 25. Wu, R.L., Lim, C.J., Grace, J.R., Brereton, C.M.H., 1991. Instantaneous Local Heat Transfer and Hydrodynamics in a Circulating Fluidized Bed. Int. J. Heat Mass Transfer 34, 2019–2027.Google Scholar

  • 26. Yan, C., Lu, C., Liu, Y., Cao, R., Shi, M., 2009. Hydrodynamics in Airlift Loop Section of Petroleum Coke Combustor. Powder Technol. 192, 143–151.Web of ScienceGoogle Scholar

  • 27. Yan, C., Lu, C., Zhang, Y., Wang, D., Liu, M., 2010. Profiles of solid fraction and heterogeneous phase structure in a gas–solid airlift loop reactor. Chem. Eng. Sci. 65, 2707–2726.Web of ScienceGoogle Scholar

  • 28. Yerushalmi, J., Turner, D.H., Squires, A.M., 1976. The Fast Fluidized Bed. Ind. Eng. Chem. Proc. Des. Dev. 15, 47–53.Google Scholar

  • 29. Zhu, C., Slaughter, M.C., Soo, S.L., 1991. Covariance of Density and Velocity Fields of a Gas-Solid Suspension. Rev. Sci. Instrum. 62, 2835–2836.Google Scholar

About the article

Published Online: 2016-02-02

Published in Print: 2016-02-01


Funding: The authors acknowledge the financial supports by the National Natural Science Foundation of China (21276273), the Ministry of Science and Technology of China (2012CB215004), the Science Foundation of China University of Petroleum, Beijing (2462015YQ0312).


Citation Information: International Journal of Chemical Reactor Engineering, Volume 14, Issue 1, Pages 527–532, ISSN (Online) 1542-6580, ISSN (Print) 2194-5748, DOI: https://doi.org/10.1515/ijcre-2015-0162.

Export Citation

©2016 by De Gruyter.Get Permission

Comments (0)

Please log in or register to comment.
Log in