Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao

IMPACT FACTOR 2017: 0.881
5-year IMPACT FACTOR: 0.908

CiteScore 2017: 0.86

SCImago Journal Rank (SJR) 2017: 0.306
Source Normalized Impact per Paper (SNIP) 2017: 0.503

See all formats and pricing
More options …
Volume 14, Issue 2


Volume 17 (2019)

Volume 9 (2011)

Volume 8 (2010)

Volume 7 (2009)

Volume 6 (2008)

Volume 5 (2007)

Volume 4 (2006)

Volume 3 (2005)

Volume 2 (2004)

Volume 1 (2002)

Effect of L/D Ratio on Phase Holdup and Bubble Dynamics in Slurry Bubble Column using Optical Fiber Probe Measurements

Saba A. Gheni / Yasser I. Abdulaziz / Muthanna H. Al-Dahhan
Published Online: 2016-02-20 | DOI: https://doi.org/10.1515/ijcre-2015-0035


In this investigation, time average local gas holdup and bubble dynamic data were achieved for three L/D ratios of slurry bubble column. The examined ratios were 3, 4 and 5 in 18″ diameter slurry bubble column. Air-water-glass bead system was used with superficial gas velocity up to 0.24 m/s. The gas holdup was measured using four tips optical fiber probe technique. The results showed that the gas holdup increases almost linearly with the superficial gas velocity in 0.08 m/s and levels off with a further increase of velocity. A comparison of the present data with those reported for other slurry bubble column having diameters greater than 18″ and L/D higher than 5 was made. The results indicated a little effect of diameter on the gas holdup. A local, section-averaged gas holdup increases with increasing superficial gas velocity, while the effect of solid loading are less significant than that of the superficial gas velocity. Chaos analysis was used to analyze the slurry system.

Keywords: slurry bubble column; gas holdups; optical fiber probe


  • 1. Baird, M.H., Rice, R.G., 1975. Axial Dispersion in Large Un-Baffled Columns. Chem. Eng. J. 9, 171–174.Google Scholar

  • 2. Bukur, D.B., Daly, J.G., 1987. Gas Holdup in Bubble Columns for Fischer Tropsch Synthesis. Chem. Eng. Sci. 42, 2967–2969Google Scholar

  • 3. Darton, R.C., Harrision, D., 1975. Gas and Liquid Holdup in Three-Phase Fluidization. Chem. Eng. Sci. 30, 581Google Scholar

  • 4. Daw, C.S., Halow, J.S., 1991. Characterization of Voidage and Pressure Signals from Fluidized Beds Using Deterministic Chaos Theory, in: Anthony, E.J. (Ed.), Proceeding of the 11th International Conference on Fluidized Bed Combustion, 1, 777–786.

  • 5. Daw, C.S., Lawkins, W.F., Downing, D.J., Clapp, N.E., 1990. Chaotic Characteristics of a Complex Gas Solid Flow. Phys. Rev. A. 41, 1179–1181.Google Scholar

  • 6. Devanathan, N., Dudukovic, M., Lapin, P.A., Lubbert, A., 1995. Chaotic Flow in Bubble Column Reactors. Chem. Eng. Sci. 50, 2661–2667.Google Scholar

  • 7. De Swart, J.W.A., Krishna, R., 1995. Effect of Particles Concentration on the Hydrodynamics of Bubble Column Slurry Reactors, Chem. Eng. Res. Design, Trans. Ind. Chem. Eng. 73, 308.Google Scholar

  • 8. Fan, L.-S., 1989. Gas–Liquid–Solid Fluidization Engineering, Butterworth, Stoneham, MA.Google Scholar

  • 9. Fan, L.S., Matsuura, A., Chern, S.H., 1985. Hydrodynamic Characteristics of a Gas-Liquid-Solid Fluidized Bed Containing a Binary Mixture of Particles. AlChE J. 31, 1801Google Scholar

  • 10. Fan, L.S., Satija, S., Wisecarver, K., 1986. Pressure Fluctuation Measurements and Flow Regime Transitions in Gas-Liquid-Solid Fluidized Beds. AlChE J. 32, 338.Google Scholar

  • 11. Forret, A., Schweitzer, J.M., Gauthier, T., Krishna, R., Schweich, D., 2006. Scale Up of Slurry Bubble Reactors. Oil Gas Sci. Technol. Rev. IFP 61, 443–458.Google Scholar

  • 12. Gandhi, B., Prakash, A., Bergougnou, M.A., 1999. Hydrodynamic Behavior of Slurry Bubble Column at High Solids Concentrations. Powder Technol. 103, 80–94.Google Scholar

  • 13. Ghani, S.A., Khalefa, I.A., 2011. An Experimental Study of Local Mass Transfer Measurements in a Bubble Column Reactor Using an Electrochemical Technique. Pet. Sci. Technol. 29, 1494–1503.Google Scholar

  • 14. Grassberger, P., Procaccia, I., 1983. Singular Value Decomposition and the Grassberger-Procaccia Algorithm. Phys. Rev. A: At. Mol. Opt. Phys. 28, 2591.Google Scholar

  • 15. Grassberger, P., Schreiber, Th., Schraffrath, C., 1991. Non-Linear Time Sequence Analysis. Int. J. Bifurcation Chaos 1, 521Google Scholar

  • 16. Hu, L.S., Wang, X.J., Yu, G.S., Wang, Y.F., Zhou, Z.J., Wang, F.C., Yu, Z.H., 2009. Nonlinear Anal. 10, 410Google Scholar

  • 17. Joshi, J.B., Parasu, V.U., Prasad, Ch.V., Phanikumar, D.V., Deshphande, N.S., Thakre, S.S., Thorat, B.N., 1998. Gas Holdup Structure in Bubble Column Reactors. PINSA Rev. Article 64A 4, 441–567.Google Scholar

  • 18. Kara, S., Kelkar, B.G., Shah, Y.T., Carr, N.L., 1982. Hydrodynamic and Axial Mixing in a Three-Phase Bubble Column. Ind. Eng. Chem. Proc. Des. Dev. 21, 584–594Google Scholar

  • 19. Kim, M.C., Kim, K.Y., Kim, S., 2005. Improvement of Impedance Imaging for Two-Phase Systems with Boundary Estimation Approach in Electrical Impedance Tomography. Can. J. Chem. Eng. 83, 55–63.Google Scholar

  • 20. Kim, S.D., Baker, C.G.J., Bergougnou, M.A., 1972. Hold-up and Axial Mixing Characteristics of Two and Three Phases Fluidized Beds, Can. J. Chem Eng. 50, 695.Google Scholar

  • 21. Koide, K., Takazawa, A., Komura, M., Motsunga, H., 1984. Gas Holdup and Volumetric Liquid-Phase Mass Transfer Coefficient in Solid-Suspended Bubble Columns. J. Chem. Eng. 17, 459–466.Google Scholar

  • 22. Krishna, R., 2000. A Scale-up Strategy for a Commercial Scale Bubble Column Slurry Reactor for Fischer-Tropsch Synthesis. Oil Gas Sci. Technol. Rev. IFP 55, 359–393.Google Scholar

  • 23. Krishna, R., Deswart, J.W.A., Ellenberger, J., Martina, G.B., Maretto, C., 1997. Gas Holdup in Slurry Bubble-Columns—Effect of Column Diameter and Slurry Concentrations. AIChE J. 43, 311–316Google Scholar

  • 24. Krishna, R., Wilkinson, P.M., Van Dierendonck, L.L., 1991. A model for gas holdup in bubble columns incorporating the influence of gas density on flow regime transitions. Chem. Eng. Sci. 46, 2491–2496.Google Scholar

  • 25. Letzel, H.M., Schouten, J.C., Krishna, R., van den Bleek, C.M., 1996. Characterization of Regimes and Regime Transitions in Bubble Columns by Chaos Analysis of Pressure Signals. Chem. Eng. Sci. 52, 4447–4459.Google Scholar

  • 26. Lewnard, J.J., Hsiung, T.H., White, J.F., Brown, D.M., 1990. Single-step synthesis off dimethyl ether in a slurry reactor. Chem. Eng. Sci. 45, 2735–2741.Google Scholar

  • 27. Lili, G., Yanfu, S., Huarui, Y., 1999. Chaotic Analysis of Pressure Fluctuation Signal in the Gas–Liquid Concurrent Flow. Chem. React. Eng. Technol. 15, 428–434.Google Scholar

  • 28. Lin, T.J., Juang, R.C., Chen, C., 2001. Characterizations of Flow Regime Transitions in a High-Pressure Bubble Column by Chaotic Time Series Analysis of Pressure Fluctuation Signals. Chem. Eng. Sci. 56, 6241–6247.Google Scholar

  • 29. Mena, P.C., Ruzicka, M.C., Rocha, F.A., 2005. Effect of Solids on Homogeneous–Heterogeneous Flow Regime Transition in Bubble Columns. Chem. Eng. Sci. 60, 6013–6026.Google Scholar

  • 30. Mingyan, L., Jianping, W., Xiuyun, Q., Zongdingm, H., 1998. Local Chaos Characteristics in a Self-Aspirated Reversed Flow Jet Loop Reactor. Trans. Tianjin Univ. 4.Google Scholar

  • 31. Mosdorfa, R., Shojib, M., 2003. Chaos in Bubbling-Nonlinear Analysis and Modeling. Chem. Eng. Sci. 58, 3837–3846.Google Scholar

  • 32. Nedeltchev, S., 2009. Application of Chaos Analysis for the Investigation of Turbulence in Heterogeneous Bubble Columns. Chem. Eng. Technol. 32, 1974–1983Google Scholar

  • 33. Nedeltchev, S., Shaikh, A., Al-Dahhan, M., 2011. Flow Regime Identification in a Bubble Column via Nuclear Gauge Densitometry and Chaos Analysis. Chem. Eng. Technol. 34, 225–233.Google Scholar

  • 34. Parasu, V.B., Joshi, J.B., 2000. Measurement of Gas Holdup Profiles in Bubble Column by Gamma Ray Tomography. Effect of Liquid Phase Properties. Trans. IChemE 78, Part A 425–434.Google Scholar

  • 35. Prince, M.J., Blanch, H.W., 1990. Bubble Coalescence and Break Up in Air- Sparged Bubble Columns. AIChE J. 36, 1485–1499.Google Scholar

  • 36. Rabha, S., Schubert, M., Hampel, U., 2013. Intrinsic Flow Behavior in a Slurry Bubble Column: A Study on the Effect of Particle Size. Chem. Eng. Sci. 93, 401–411.Google Scholar

  • 37. Schouten, J.C., Vander Stappen, M.I., Van den Bleek, C.M., 1996. Scale-up of Chaotic Fluidized Bed Hydrodynamics. Chem. Eng. Sci. 51, 1991–2000.Google Scholar

  • 38. Shah, Y.T., Kelkar, B.G., Godbole, S.P., Deckwer, W.D., 1982. Design Parameters Estimations for Bubble Column Reactors. AIChE J. 28, 353–379.Google Scholar

  • 39. Towell, G.D., Ackerman, G.H., 1972. Axial Mixing of Liquid and Gas in Large Bubble Reactors. Proceeding of 2nd International Symposium Chem. React. Eng., Amsterdam, the Netherlands, B3.1–B3.13.

  • 40. Van den Bleek, C.M., Schouten, J.C., 1993. Deterministic Chaos: A NewTool in Fluidized Bed Design and Operation. Chem. Eng. J. 53, 75–87.

  • 41. Vandu, C.O., Krishna, R., 2004. Influence of Scale on the Volumetric Mass Transfer Coefficient in Bubble Columns. Chem. Eng. Proc. 43, 575–579.Google Scholar

  • 42. Vinit, P.C., 2007. Hydrodynamics and Mass Transfer in Slurry Bubble Columns: Scale and Pressure Effects, PhD Thesis, Technology University Eindhoven, India.

  • 43. Wilkinson, P.M., Spek, A.P., van Dierendonck, L.L., 1992. Design Parameters Estimation for Scale-up of High Pressure Bubble Columns, AlChE J. 38, 544–554Google Scholar

  • 44. Wilkinson, P.M., van Dierendonck, L.L., 1990. Pressure and Gas Density Effects on Bubble Break-up and Gas Hold-up in Bubble Columns. Chem. Eng. Sci. 45, 2309–2315.Google Scholar

  • 45. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A., 1985. Determining Lyapunov Exponent from a Time series. Physica D 16, 285–317Google Scholar

  • 46. Xiaoxiang, L., Yanfu, S., Lili, G. 2002. Chaotic Identification of Regimes of Gas–Liquid–Solid Three-Phase Co-Current Flow System. J. Chem. Eng Chinese Univ. 16, 84–87.Google Scholar

  • 47. Xue, J., 2004. Bubble Velocity Size and Interfacial Area Measurements in Bubble Columns, PhD Dissertation, Washington University, St. Louis.

  • 48. Xue, J., Al-Dahhan, M., Dudukovica, M.P., Mudde, R.F., 2008. Four-Point Optical Probe for Measurement of Bubble Dynamics: Validation of the Technique. Flow Meas. Instrum. 19, 293–300.Google Scholar

  • 49. Yang, Y.B., Devanathan, N., Dudukovic, M.P., 1992. Liquid Backmixing in Bubble Columns. Chem. Eng. Sci. 47, 2859–2864.Google Scholar

  • 50. Yasunishi, M., Fukuma, K., Muroyama, J., 1986. Measurements of the Behavior of Gas Bubbles and Gas Holdup in a Slurry Bubble Column by a Dual Electro-Resistivity Probe Method. Chem. Eng. J. 19, 119–444.Google Scholar

  • 51. Youssef, A., 2010. Fluid Dynamics and Scale-Up Of Bubble Columns with Internals, PhD Dissertation, Washington University, St. Louis.

  • 52. Zhang, Y., Li, Z., Li, H., Wang, L., Li, X., 2012. Studies on Hydrodynamics of turbulent Slurry Bubble Column-Modeling of Bubble Column with Multi-Layer Screens. CIESC J. 63.Google Scholar

About the article

Published Online: 2016-02-20

Published in Print: 2016-04-01

Funding Source: Chemical Security Programh

Award identifier / Grant number: 18625

Chemical Security Program “18625”.

Citation Information: International Journal of Chemical Reactor Engineering, Volume 14, Issue 2, Pages 653–664, ISSN (Online) 1542-6580, ISSN (Print) 2194-5748, DOI: https://doi.org/10.1515/ijcre-2015-0035.

Export Citation

©2016 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Comments (0)

Please log in or register to comment.
Log in