Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao

12 Issues per year


IMPACT FACTOR 2017: 0.881
5-year IMPACT FACTOR: 0.908

CiteScore 2017: 0.86

SCImago Journal Rank (SJR) 2017: 0.306
Source Normalized Impact per Paper (SNIP) 2017: 0.503

Online
ISSN
1542-6580
See all formats and pricing
More options …
Volume 14, Issue 4

Simulation of the Selective Hydrogenation of C3-Cut in the Liquid Phase

Gaetan Mary / Amin Esmaeili
  • Department of Chemical Engineering, Polytechnique Montréal, P.O. Box 6079, St. C.V., Montreal, Que., Canada H3C3A7
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jamal Chaouki
  • Corresponding author
  • Department of Chemical Engineering, Polytechnique Montréal, P.O. Box 6079, St. C.V., Montreal, Que., Canada H3C3A7
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-03-12 | DOI: https://doi.org/10.1515/ijcre-2015-0095

Abstract

In this work, the selective hydrogenation of C3-cut in the liquid phase has been investigated. A realistic model has been developed to simulate the selective transformation of methylacetylene (MA) and propadiene (PD) into propylene in an industrial-scale reactor. The reaction rates have been determined for the gas phase hydrogenation process and adapted for the liquid phase by considering several changes including the catalyst activity and the concentration of reactive components. In the last part of this work, a three-phase hydrodynamic model was developed and the kinetic and hydrodynamic models were then combined in order to achieve the global reactor model. In addition, the results obtained from the model were compared to those from an industrial reactor. It was found that there is a good agreement between the simulation predictions and the output of the real industrial reactor.

Keywords: C3-cut; selective hydrogenation; hydrodynamic model; reaction rates; simulation; three-phase reactor

References

  • 1. Arnold, H., Döbert, F., Gaube, J., Ertl, G., Knözinger, H., Weitkamp, J., 1997. Handbook of Heterogeneous Catalysis, Vol. 7. KGaA, Weinheim, Germany: Wiley-VCH Verlag GmbH & Co.Google Scholar

  • 2. Bartholomew, C.H., Fuentes, G.A., 1997. Coke formation in catalytic processes: Kinetics and catalyst deactivation. Catalyst Deactivation. 1997, 53.Google Scholar

  • 3. Bartholomew, C.H., Farrauto, R.J., 2006. Fundamentals of Industrial Catalytic Processes, 2nd ed. Hoboken, New Jersey: John Wiley & Sons, Inc.

  • 4. Bhaskar, M., Valavarasu, G., Sairam, B., Balaraman, K.S., Balu, K., 2004. Three-phase reactor model to simulate the performance of pilot-plant and industrial trickle-bed reactors sustaining hydrotreating reactions. Industrial and Engineering Chemistry Research 43, 6654–6669.Google Scholar

  • 5. Boudart, M., Djega-Mariadassou, G., 1982. La Cinétique Des Réactions En Catalyse Hétérogène. Masson, Paris.Google Scholar

  • 6. Chaouki, J., 2006. “Selective hydrogenation of MA and PD on Pd/Al2O3 catalyst.” Internal Report.

  • 7. Chaudhari, R.V., Ramachandran, P.A., 1980. Three phase slurry reactors. AIChE Journal 26, 177–201.Google Scholar

  • 8. Christensen, C., 1989. Heats of Mixing Data Collection: Binary and Multicomponent Systems (Supplement 1). Frankfurt, Germany: DECHEMA, Deutsche Gesellschaft für Chemisches Apparatewesen.Google Scholar

  • 9. Cosyns, J., Martino, G., 1997. Hydrogénation Des Hydrocarbures. France: Techniques de l’Ingénieur, Génie des Procédés.Google Scholar

  • 10. Dietz, A., Julcour, C., Wilhelm, A.M., Delmas, H., 2003. “Selective hydrogenation in trickle-bed reactor: Experimental and modelling including partial wetting.” Catalysis in Multiphase Reactors, May 29 2000, Naples, Italy.

  • 11. Fajardo, J.C., Cabanes, A.L., Godinez, C., Villora, G., 1996. Kinetic study of the C3 cut tail end selective hydrogenation. Chemical Engineering Communications 140, 21–39.Google Scholar

  • 12. Fajardo, J.C., Godinez, C., Cabanes, A.L., Villora, G., 1996. Kinetic analysis of rate data for propylene and methylacetylene hydrogenation. Chemical Engineering and Processing 35, 203–211.Google Scholar

  • 13. Froment, G.F., 2001. Modeling of catalyst deactivation. Applied Catalysis A: General 212, 117–128.Google Scholar

  • 14. Froment, G.F., 2004. Modeling in the development of hydrotreatment processes. Catalysis Today 98, 43–54.Google Scholar

  • 15. Godinez, C., Cabanes, A.L., Villora G., 1995. Experimental study of the front-end selective hydrogenation of steam-cracking C2-C3 mixture. Chemical Engineering and Processing 34, 459–468.Google Scholar

  • 16. Godínez, C., Cabanes, A.L., Víllora, G., 1996. Experimental study of the tail end selective hydrogenation of steam cracking C2-C3 mixture. The Canadian Journal of Chemical Engineering 74, 84–93. doi:.CrossrefGoogle Scholar

  • 17. Godinez, C., Cabanes, A.L., Villora, G., 1998. Experimental study of the selective hydrogenation of steam cracking C2 cut. Front end and tail end variants. Chemical Engineering Communications 164, 225–247.Google Scholar

  • 18. Herskowitz, M., Morita, S., Smith, J.M., 1978. Solubility of hydrogen in. Alpha.-methylstyrene. Journal of Chemical and Engineering Data 23, 227–228.Google Scholar

  • 19. Holub, R.A., Duduković, M.P., Ramachandran, P.A., 1993. Pressure drop, liquid holdup, and flow regime transition in trickle flow. AIChE Journal 39, 302–321.Google Scholar

  • 20. Huang, W., 2007. Selective hydrogenation of acetylene on zeolite-supported bimetallic catalysts. Ann Arbor, MI, United States: ProQuest. http://search.proquest.com/docview/304860491?accountid=40695Google Scholar

  • 21. Korsten, H., Hoffmann, U., 1996. Three-phase reactor model for hydrotreating in pilot trickle-bed reactors. AIChE Journal 42, 1350–1360.Google Scholar

  • 22. Laidler, K.J., 1984. The development of the Arrhenius equation. Journal of Chemical Education 61, 494.Google Scholar

  • 23. Larachi, F., Laurent, A., Midoux, N., Wild, G., 1991. Experimental study of a trickle-bed reactor operating at high pressure: Two-Phase pressure drop and liquid saturation. Chemical Engineering Science 46, 1233–1246.Google Scholar

  • 24. Larachi, F., Grandjean, B.P.A., 2001. Excel Worksheet Simulators for Packed-bed Reactors. Chemical Engineering Department, http://www.gch.ulaval.ca/bgrandjean/pbrsimul/pbrsimul.html.

  • 25. Madon, R.J., Iglesia, E., 2000. Catalytic reaction rates in thermodynamically non-ideal systems. Journal of Molecular Catalysis A: Chemical 163, 189–204.Google Scholar

  • 26. Mears, D.E., 1971. The role of axial dispersion in trickle-flow laboratory reactors. Chemical Engineering Science 26, 1361–1366.Google Scholar

  • 27. Mederos, F.S., Rodriguez, M.A., Ancheyta, J., Arce, E., 2006. Dynamic modeling and simulation of catalytic hydrotreating reactors. Energy and Fuels 20, 936–945.Google Scholar

  • 28. Molnár, Á., Sárkány, A., Varga, M., 2001. Hydrogenation of carbon–carbon multiple bonds: Chemo-, regio-and stereo-selectivity. Journal of Molecular Catalysis A: Chemical 173, 185–221.Google Scholar

  • 29. Morita, S., Smith, J.M., 1978. Mass transfer and contacting efficiency in a trickle-bed reactor. Industrial & Engineering Chemistry Fundamentals 17, 113–120.Google Scholar

  • 30. Nishimura, S., 2001. Handbook of Heterogeneous Catalytic Hydrogenation for Organic Synthesis. New York, United States of America: John Wiley & Sons, http://www.knovel.com/knovel2/Toc.jsp?BookID=1157&VerticalID=0.Google Scholar

  • 31. Ramachandran, P.A., Chaudhari, R.V., 1983. Three-Phase Catalytic Reactors, Vol. 2. New York, United States of America: Gordon & Breach Science Pub.Google Scholar

  • 32. Rodriguez, M.A., Ancheyta, J., 2004. Modeling of hydrodesulfurization (HDS), hydrodenitrogenation (HDN), and the hydrogenation of aromatics (HDA) in a vacuum gas oil hydrotreater. Energy and Fuels 18, 789–794.Google Scholar

  • 33. Saroha, A., Nigam, K.D.P., 1996. Trickle bed reactors. Reviews in Chemical Engineering 12, 207–347.Google Scholar

  • 34. Shin, E.W., Choi, C.H., Chang, K.S., Na, Y.H., Moon, S.H., 1998. Properties of Si-modified Pd catalyst for selective hydrogenation of acetylene. Catalysis Today 44, 137–143.Google Scholar

  • 35. Sie, S.T., 1991. Scale effects in laboratory and pilot-plant reactors for trickle-flow processes. Revue De L’institut Francais Du Petrole 46, 501–515.Google Scholar

  • 36. Sie, S.T., Krishna, R., 1998. Process development and scale up: III. Scale-up and scale-down of trickle bed processes. Reviews in Chemical Engineering 14, 203–252.Google Scholar

  • 37. Uygur, H., Atalay, S., Savasci, T.O., 1998. Kinetics of liquid phase selective hydrogenation of methylacetylene and propadiene in C3 streams. Journal of Chemical Engineering of Japan 31, 178–186.Google Scholar

  • 38. van Klinken, J., van Dongen, R.H., 1980. Catalyst dilution for improved performance of laboratory trickle-flow reactors. Chemical Engineering Science 35, 59–66.Google Scholar

  • 39. Wakao, N., Funazkri, T., 1978. Effect of fluid dispersion coefficients on particle-to-fluid mass transfer coefficients in packed beds: Correlation of Sherwood numbers. Chemical Engineering Science 33, 1375–1384.Google Scholar

  • 40. Wammes, W.J.A., Roel Westerterp, K., 1991. Hydrodynamics in a pressurized cocurrent gas‐liquid trickle‐bed reactor. Chemical Engineering & Technology 14, 406–413.Google Scholar

  • 41. Wang, Bo., Froment, G.F., 2005. Kinetic modeling and simulation of the selective hydrogenation of the C3-cut of a thermal cracking unit. Industrial and Engineering Chemistry Research 44, 9860–9867.Google Scholar

  • 42. Westerterp, K.R., Wammes, W.J.A., 2002. “Three-phase trickle-bed reactors.”Web of Science

  • 43. Yaws, C.L., Gabbula, C., 2003. Handbook of Thermodynamic and Physical Properties of Chemical Compounds, Norwich, New York, United Sates of America: Knovel.Google Scholar

About the article

Published Online: 2016-03-12

Published in Print: 2016-08-01


Citation Information: International Journal of Chemical Reactor Engineering, Volume 14, Issue 4, Pages 859–874, ISSN (Online) 1542-6580, ISSN (Print) 2194-5748, DOI: https://doi.org/10.1515/ijcre-2015-0095.

Export Citation

©2016 by De Gruyter.Get Permission

Comments (0)

Please log in or register to comment.
Log in