Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao

12 Issues per year


IMPACT FACTOR 2016: 0.623
5-year IMPACT FACTOR: 0.761

CiteScore 2016: 0.58

SCImago Journal Rank (SJR) 2016: 0.224
Source Normalized Impact per Paper (SNIP) 2016: 0.297

Online
ISSN
1542-6580
See all formats and pricing
More options …

Thermodynamic Analysis of Ethanol Synthesis from Glycerol by Two-Step Reactor Sequence

Erick A. Mendoza-Chávez
  • Facultad de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacan, Mexico
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Nancy E. Rodríguez-Olalde
  • Facultad de Ingeniería y Tecnología de la Madera, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacan, Mexico
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rafael Maya-Yescas
  • Facultad de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacan, Mexico
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jesús Campos-García
  • Instituto de Investigaciones Químico-Biológicas. Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, 58030, Morelia, Michoacán, México
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jaime Saucedo-Luna
  • Facultad de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacan, Mexico
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Agustín J. Castro-Montoya
  • Corresponding author
  • Facultad de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacan, Mexico
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-11-04 | DOI: https://doi.org/10.1515/ijcre-2015-0168

Highlights

  • Glycerol was dry-reformed to syngas and sequentially utilized for ethanol synthesis

  • Adding CO2 to the glycerol dry reforming reactor was advantageous for ethanol synthesis

  • Maximum yield was 1 mole ethanol per mole glycerol at CO2/glycerol ratio≥2

  • ethanol synthesis from syngas was dependent on the temperature and CO2/glycerol ratio

  • Wasted glycerol from biodiesel-manufacturing is suitable for syngas/ethanol production

Abstract

Conversion of biomass-derived syngas to ethanol has recently received significant attention because of strong demands for alternative and renewable energy sources; therefore glycerol has been suggested as promising raw material for obtaining ethanol in two consecutive steps. In this work, a thermodynamic study of glycerol dry reforming to produce syngas and subsequent ethanol production, as two-step process, was evaluated by means of the method of Gibbs free energy minimization. The effect of parameters such as reaction temperature, CO2/glycerol ratio (CGR), and pressure (P) on system performance was investigated. Reactions were simulated between 700–1,500 K and CGR range of 0–5, at 1 atm pressure. Calculations were performed with Aspen Plus 8.4, using Peng–Robinson thermodynamic method for properties estimation. Optimum conditions for syngas and ethanol production were determined, in order to prevent carbon deposition and methane formation. At temperatures above 900 K and CGR<1, between 3 and 7 mole of H2/mole of glycerol can be generated. Results indicated that the addition of CO2 to the glycerol dry reforming reactor favored syngas and ethanol synthesis. The maximum yield obtained was 1 mole of ethanol per mole of glycerol at CGR≥2. Simulations indicate that temperature and CGR are essential factors for determining the process efficiency of the production of ethanol from syngas. These results suggest that glycerol wasted from biodiesel manufacturing should be useful as efficient raw material for syngas and ethanol production.

Keywords: biofuels; biomass; glycerol dry reforming; ethanol; syngas; thermodynamics

References

  • 1. Andersson, R., Boutonnet, M., Järås, S., 2014. Higher alcohols from syngas using a K/Ni/MoS2 catalyst: Trace sulfur in the product and effect of H2S-containing feed. Fuel 115, 544–550.Google Scholar

  • 2. Authayanun, S., Wiyaratn, W., Assabumrungrat, S., Arpornwichanop, A., 2013. Theoretical analysis of a glycerol reforming and high-temperature PEMFC integrated system: Hydrogen production and system efficiency. Fuel 105, 345–352.Google Scholar

  • 3. Bion, N., Duprez, D., Epron, F., 2012. Design of nanocatalysts for green hydrogen production from bioethanol. ChemSusChem 5, 76–84.Google Scholar

  • 4. Chiang, S.W., Chang, C.C., Shie, J.L., Chang, C.Y., Ji, D.R., Tseng, J., Chen, Y., 2012. Synthesis of alcohols and alkanes from CO and H2 over MoS2/γ-Al2O3 catalyst in a packed bed with continuous flow. Energies 5(10), 4147–4164.Google Scholar

  • 5. Climent, M.J., Corma, A., De Frutos, P., Iborra, S., Noy, M., Velty, A., Concepción P., 2010. Chemicals from biomass: Synthesis of glycerol carbonate by transesterification and carbonylation with urea with hydrotalcite catalysts. The role of acid–base pairs. Journal of Catalysis 269(1), 140–149.Google Scholar

  • 6. Fang, K., Li, D., Lin, M., Xiang, M., Wei, W., Sun, Y., 2009. A short review of heterogeneous catalytic process for mixed alcohols synthesis via syngas. Catalysis Today 147(2), 133–138.Google Scholar

  • 7. Fernández, Y., Arenillas, A., Bermúdez, J.M., Menéndez, J.A., 2010. Comparative study of conventional and microwave-assisted pyrolysis, steam and dry reforming of glycerol for syngas production, using a carbonaceous catalyst. Journal of Analytical and Applied Pyrolysis 88(2), 155–159.Google Scholar

  • 8. Gong, J., Yue, H., Zhao, Y., Zhao, S., Zhao, L., Lv, J., Ma, X., 2012. Synthesis of ethanol via syngas on Cu/SiO2 catalysts with balanced Cu0–Cu+ sites. Journal of the American Chemical Society 134(34), 13922–13925.Google Scholar

  • 9. Gupta, M., Smith, M.L., Spivey, J.J., 2011. Heterogeneous catalytic conversion of dry syngas to ethanol and higher alcohols on Cu-based catalysts. Acs Catalysis 1(6), 641–656.Google Scholar

  • 10. He, J., Zhang, W., 2008. Personal review: Research on ethanol synthesis from syngas. Journal of Zhejiang University SCIENCE A 9(5), 714–719.Google Scholar

  • 11. IPCC, 2011. Summary for policymakers, in: Edenhofer,O., Pichs‐Madruga, R., Sokona, Y., Seyboth, K., Matschoss, P., Kadner, S., Zwickel, T., Eickemeier, P., Hansen, G., Schlömer, S., von Stechow, C. (eds.), IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation. Cambridge University Press, Cambridge and New York, NY.

  • 12. Izumi, Y., 1997. Selective ethanol synthesis from carbon dioxide. Platinum Metals Review 41, 166–169.Google Scholar

  • 13. Jiménez-García, G., de Lasa, H., Quintana-Solórzano, R., Maya-Yescas, R., 2013. Catalyst activity decay due to pore blockage during catalytic cracking of hydrocarbons. FUEL 110, 89–98.Google Scholar

  • 14. Kale, G.R., Kulkarni, B.D., 2010a. Thermodynamic analysis of dry autothermal reforming of glycerol. Fuel Processing Technology 91, 520–530.Google Scholar

  • 15. Kale, G.R., Kulkarni, B.D., 2010b. Thermoneutral point analysis of ethanol dry autothermal reforming. Chemical Engineering Journal 165, 864–873.Google Scholar

  • 16. Kauffman N., Dumortier J., Hayes D.J., Brown R.C., Laird D.A., 2014. Producing energy while sequestering carbon? The relationship between biochar and agricultural productivity. Biomass and Bioenergy 63, 167–176.Google Scholar

  • 17. Khanna, S., Goyal, A., Moholkar, V.S., 2013. Production of n-butanol from biodiesel derived crude glycerol using Clostridium pasteurianum immobilized on Amberlite. Fuel 112, 557–561.Google Scholar

  • 18. Kirkels, A.F., Verbong, G.P., 2011. Biomass gasification: Still promising? A 30-year global overview. Renewable and Sustainable Energy Reviews 15(1), 471–481.Google Scholar

  • 19. Nanda, M.R., Yuan, Z., Qin, W., Ghaziaskar, H.S., Poirier, M.A., Xu, C.C., 2014. Thermodynamic and kinetic studies of a catalytic process to convert glycerol into solketal as an oxygenated fuel additive. Fuel 117, 470–477.Google Scholar

  • 20. Perry, R.H., Green, D.W., Maloney, J.O., (Eds.) 1992. Perry’s Handbook of Chemical Engineers, 3rd ed. McGraw Hill B.C., México, 1996. Ch. 4.Google Scholar

  • 21. Rostrup ‐ Nielsen, J.R., Fuels and energy for the future: The role of catalysis. Catalysis reviews 2004, 46(3–4), 247–270.Google Scholar

  • 22. Sarma, S.J., Brar, S.K., Sydney, E.B., 2012. Microbial hydrogen production by bioconversion of crude. International Journal of Hydrogen Energy 37, 6473–6490.Google Scholar

  • 23. Schefflan, R., 2011. Teach Yourself the Basic of Aspen Plus, 1st ed. John Wiley & Sons, Hoboken, NJ, pp. 123–144.Google Scholar

  • 24. Skidmore B.E., Baker R.A., Banjade D.R., Bray J.M., Tree D.R., Lewis R.S., 2013. Syngas fermentation to biofuels: Effects of hydrogen partial pressure on hydrogenase efficiency, Biomass and Bioenergy 55, 156–162.Google Scholar

  • 25. Toscano, G., Riva, G., Pedretti, E., Duca, D., 2011. Determination of the renewable energy content of chemically modified biofuels, Biomass and Bioenergy 35, 3139–3146.Google Scholar

  • 26. Wang, H., Liu, J., Fu, J., Wan, H., Tsai, K., 1992. Study on the mechanism of ethanol synthesis from syngas by in-situ chemical trapping and isotopic exchange reactions. Catalysis Letters 2(1–3), 87–96.Google Scholar

  • 27. Wang, X., Li, M., Wang, M., Wang, H. L., Wang, S., Ma, X., 2009. Thermodynamic analysis of glycerol dry reforming for hydrogen and synthesis gas production. Fuel 88(11), 2148–2153.Google Scholar

  • 28. Yue, H., Ma, X., Gong, J., 2014. An alternative synthetic approach for efficient catalytic conversion of syngas to ethanol. Accounts of chemical research 47(5), 1483–1492.Google Scholar

  • 29. Zhu, L.J., Wang, S.R., Li, X.B., Yin, Q.Q., Luo, Z.Y., 2012. Thermodynamic Analysis of Indirect ethanol Synthesis from Syngas. Advanced Materials Research 433, 457–462.Google Scholar

About the article

Published Online: 2016-11-04

Published in Print: 2016-12-01


Funding Source: Consejo Nacional de Ciencia y Tecnología

Award identifier / Grant number: 266629

Award identifier / Grant number: 266583

This study was funded by Consejo Nacional de Ciencia y Tecnología (CONACyT), EAM-C and NEM-O thank grants 266629 and 266583 (CONACyT), respectively for postgraduate studies.


Citation Information: International Journal of Chemical Reactor Engineering, Volume 14, Issue 6, Pages 1169–1176, ISSN (Online) 1542-6580, ISSN (Print) 2194-5748, DOI: https://doi.org/10.1515/ijcre-2015-0168.

Export Citation

©2016 by De Gruyter. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in